Ernst Hafen: Catalogue data in Spring Semester 2021

Name Prof. em. Dr. Ernst Hafen
FieldMolekulare Entwicklungsbiologie
Address
Inst. f. Molekulare Systembiologie
ETH Zürich, HPM H 29
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
E-mailhafen@imsb.biol.ethz.ch
URLhttp://www.imsb.ethz.ch/researchgroup/hafene
DepartmentBiology
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
551-0016-AALBiology II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
2 credits4RM. Stoffel, E. Hafen
AbstractThe lecture course Biology II is a basic introductory course into biology for students who need to pass this course for admission to their MSc curriculum.
ObjectiveThe objective of the lecture course Biology II is the understanding of form, function, and development of animals and of the basic underlying mechanisms.
ContentThe following numbers of chapters refer to the text-book "Biology" (Campbell & Reece, 10th edition, 2015) on which the course is based. Chapters 1-4 are a basic prerequisite. The sections "Structure of the Cell" (Chapters 5-10, 12, 17) and "General Genetics" (Chapters 13-16, 18, 46) are covered by the lecture Biology I.

1. Genomes, DNA Technology, Genetic Basis of Development

Chapter 19: Eukaryotic Genomes: Organization, Regulation, and Evolution
Chapter 20: DNA Technology and Genomics
Chapter 21: The Genetic Basis of Development

2. Form, Function, and Development of Animals I

Chapter 40: Basic Principles of Animal Form and Function
Chapter 41: Animal Nutrition
Chapter 44: Osmoregulation and Excretion
Chapter 47: Animal Development

3. Form, Function, and Develeopment of Animals II

Chapter 42: Circulation and Gas Exchange
Chapter 43: The Immune System
Chapter 45: Hormones and the Endocrine System
Chapter 48: Nervous Systems
Chapter 49: Sensory and Motor Mechanisms
LiteratureThe following text-book is the basis for the courses Biology I and II:

Biology, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4
Prerequisites / NoticePrerequisite: Lecture course Biology I of winter semester
551-0016-00LBiology II Information 2 credits2VM. Stoffel, E. Hafen, K. Köhler
AbstractThe lecture course Biology II, together with the course Biology I of the previous winter semester, is a basic introductory course into biology for students of materials sciences, of chemistry and of chemical engineering.
ObjectiveThe objective of the lecture course Biology II is the understanding of form, function, and development of animals and of the basic underlying mechanisms.
ContentThe following numbers of chapters refer to the text-book "Biology" (Campbell & Rees, 10th edition, 2015) on which the course is based.

Chapters 1-4 are a basic prerequisite. The sections "Structure of the Cell" (Chapters 5-10, 12, 17) and "General Genetics" (Chapters 13-16, 18, 46) are covered by the lecture Biology I.

1. Genomes, DNA Technology, Genetic Basis of Development

Chapter 19: Eukaryotic Genomes: Organization, Regulation, and Evolution
Chapter 20: DNA Technology and Genomics
Chapter 21: The Genetic Basis of Development

2. Form, Function, and Development of Animals I

Chapter 40: Basic Principles of Animal Form and Function
Chapter 41: Animal Nutrition
Chapter 44: Osmoregulation and Excretion
Chapter 47: Animal Development

3. Form, Function, and Develeopment of Animals II

Chapter 42: Circulation and Gas Exchange
Chapter 43: The Immune System
Chapter 45: Hormones and the Endocrine System
Chapter 48: Nervous Systems
Chapter 49: Sensory and Motor Mechanisms
Lecture notesThe course follows closely the recommended text-book. Additional handouts may be provided by the lecturers.
LiteratureThe following text-book is the basis for the courses Biology I and II:

Biology, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4
Prerequisites / NoticePrerequisite: Lecture course Biology I of autumn semester
551-0103-AALFundamentals of Biology II: Cell Biology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits11RU. Kutay, Y. Barral, E. Hafen, G. Schertler, U. Suter, S. Werner
AbstractThe goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
ObjectiveThe goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
ContentThe focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.
LiteratureAlberts et al. 'Molecular Biology of the Cell' 6th edition, 2014, ISBN 9780815344322 (hard cover) and ISBN 9780815345244 (paperback).

Topic/Lecturer/Chapter/Pages:

Analyzing cells & molecules / Gebhard Schertler/8/ 439-463;
Membrane structure / Gebhard Schertler/ 10/ 565-595;
Compartments and Sorting/ Ulrike Kutay/12+14+6/641-694/755-758/782-783/315-320/325 -333/Table 6-2/Figure6-20, 6-21, 6-32, 6-34;
Intracellular Membrane Traffic/ Ulrike Kutay/13/695-752;
The Cytoskeleton/ Ulrike Kutay/ 16/889 - 948 (only the essentials);
Membrane Transport of Small Molecules and the Electrical Properties of Membranes /Sabine Werner/11/597 - 633;
Mechanisms of Cell Communication / Sabine Werner/15/813-876;
Cancer/ Sabine Werner/20/1091-1141;
Cell Junctions and Extracellular Matrix/Ueli Suter / 1035-1081;
Stem Cells and Tissue Renewal/Ueli Suter /1217-1262;
Development of Multicellular organisms/ Ernst Hafen/ 21/ 1145-1179 /1184-1198/1198-1213;
Cell Migration/Joao Matos/951-960;
Cell Death/Joao Matos/1021-1032;
Cell Cycle/chromosome segregation/Cell division/Meiosis/Joao Matos/ 963-1018.
Prerequisites / Noticenone
551-0974-00LSpecialized Biology Course with an Educational Focus: Biological Concepts Restricted registration - show details 6 credits2G + 13AE. Hafen, K. Köhler, H. Stocker
AbstractSpecialist aspects of biology with a focus on biological concepts and misconceptions are covered from the angle of imparting these to pupils, their historical development, and their significance for the subject, the individual and society.
ObjectiveAfter successful completion of the module, students should be able

- to explain biological concepts and principles, as well as the way they fit together
- to recognise and to correct existing misconceptions
- to analyse controversial topics and to give factual explanations for these
- to conduct more in-depth work on a research topic and to compile a tuition unit based on this topic
- to prepare tuition units involving complex learning matter at a high specialist level which are suitably tailored to the recipients, and to teach these in a manner conducive to learning.
ContentSelected biological topics are dealt with under consideration of the special needs of persons involved in teaching.

The module comprises lectures, a book club, and a seminar thesis.
Lecture notesTeaching materials are available online on Moodle.
LiteratureLiterature and references are posted online on Moodle.
Prerequisites / NoticeThe Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module of the spring semester deals with biological concepts. Students attending both modules can start with either module.

Performance is assessed during the course of the entire module. Active participation in the course is required. The electronic thesis and an oral presentation have to be completed.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.
551-1298-00LGenetics, Genomics, Bioinformatics Information 4 credits2V + 2UE. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz
AbstractThe course provides the basis of modern genetics, genomics and bioinformatics. A special focus is placed on the use of these tools for the understanding of biological processes in bacteria, model organisms and humans. The unit uses the principle of blended learning consisting of self-study modules in Moodle, tasks and input lectures by experts from the department.
ObjectiveAt the end of this course you know the most important genetic tools in different organisms. You can use the essential methods in bioinformatics by using online tools. You know the advantages and disadvantages of various model organisms to understand biological processes. You know the various mutagenesis methods and other tools to disrupt gene function and can discuss their merits and drawbacks. You are aware of the difficulties in choosing a phenotype for selection in a mutagenesis experiment. Finally, you can describe how you would study a specific biological process by choosing a model organism and the appropriate genetic or genomic tools.
ContentThe appearance and function of an organism (phenotype) is determined by the interplay between its genome (genotype) and the environment: Genotype + environment = phenotype. Understanding these interactions to the point where we can ultimately predict the phenotype from knowledge of the genotype and environmental factors is one oft the great challenges of biology.

In the course Bio IA you learnt about the composition and function of the genome and how it is inherited. The goal of this course is that you learn how genetic, genomic and bioinformatics methods are used to understand biological processes (the connection between genotype and phenotype).

You will start by refreshing and deepening your knowledge of the basic principles of genetics and genomics in an interactive learning modules on the Moodle platform. This is followed by an introduction of the basic tools of bioinformatics and genomic analysis.

After you have mastered the basic principles you will learn how to study biological processes either by inactivating specific genes or by randomly mutagenizing the entire genome. You will be introduced to different model organisms (bacteria, yeast, Drosophila) and humans.

At the end of this first part of the course, you will test your knowledge by working with a group of fellow students to design your own genetic study.

Conventional genetic methods rely on the alteration of the function of single genes and on the observation of the effect on the organism (phenotype). Based on the observed phenotype one deduces the normal function of the gene. However, this is a strong simplification. Even if environmental factors are controlled, phenotypes are very rarely controlled by a single gene. It is therefore important to understand the influence of the entire genome in conjunction with environmental factors on a given phenotype (e.g. human disease). Modern methods in genomics now permit first approaches in this direction. Therefore, the focus of the second part of the unit is on genomics methods. You learn, how the influence of the entire genome on a specific phenotype is detected and what challenges are involved in the analysis and the interpretation of the results. We will examine these methods in model organisms and humans. You will also learn how the genome of cancer cells changes under the constant selection for these cells to survive and how this genome analysis provides new insights into diagnosis and therapy.

This course is based on active learning. Each week consists of a learning unit with clearly defined learning goals. In the first two hours you will learn the basics from texts, videos and questionnaires on the Moodle platform. In the third lecture an expert on the topic of the week (e.g. genetic screens in yeast) from the department will give an input lecture that builds on the basic knowledge that you acquired. In the fourth lecture you will discuss the tests and topics of the week with the expert. During the semester you will have access to assistants and lecturers via the Moodle online forum.
Lecture notesThe learning material and slides of the input lectures are available on Moodle. There you will also find further information (articles, links, videos).
LiteratureAll texts and references will be available on Moodle. To follow the most recent developments in this rapidly evolving field follow the following experts on Twitter:
@dgmacarthur
@EricTopol
und/oder @ehafen
Prerequisites / NoticeThe course builds on the course Bio IA, in particular on that course's content regarding genetics and genomics. The course is based on self-learning units on Moodle, input lectures by experts from D-BIOL and exercises.