Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Dominik Wilhelm Brunner: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Dominik Wilhelm Brunner
Address
EMPA
Überlandstrasse 129
Luftfremdstoffe und Umwelttechnik
8600 Dübendorf
SWITZERLAND
Telephone058 765 49 44
Fax058 765 62 44
E-maildominik.brunner@env.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
051-0515-16LBuilding Physics IV: Urban Physics Information 3 credits3GJ. Carmeliet, J. Allegrini, D. W. Brunner, C. Schär, H. Wernli, J. M. Wunderli
AbstractUrban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context.
Objective- Basic knowledge of the global climate and the local microclimate around buildings
- Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand
- Application of urban physics concepts in urban design
Content- Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs
- Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort,
- Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks.
- Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability
- Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality
- Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation
Lecture notesAll material is provided via the website of the chair (www.carmeliet.arch.ethz.ch/Education/).
LiteratureAll material is provided via the website of the chair (www.carmeliet.arch.ethz.ch/Education/).
Prerequisites / NoticeNo prior knowledge is required.
701-0471-AALAtmospheric Chemistry Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RD. W. Brunner, M. Ammann
AbstractThis is a self-study course targeted at Master students who did not follow the bachelor course "atmospheric chemistry" or similar. The course provides a general introduction into atmospheric chemistry.
ObjectiveThe learning target of this lecture is a general overview on the most important processes of atmospheric chemistry and the various problems of the anthropogenic change in the structure of Earth's atmosphere.
Content- Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources
- Multiphase chemistry: heterogeneous kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions
Prerequisites / NoticeBasic courses in chemistry and physics are expected
701-0471-01LAtmospheric Chemistry Information 3 credits2GM. Ammann, D. W. Brunner
AbstractThe lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the kinetics of gas phase and heterogeneous reactions on aerosols and in clouds and explains the chemical and physical mechanisms responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.
ObjectiveThe students will understand the basics of gas phase and heterogeneous reactions and will know the most relevant atmospheric chemical processes taking place in the gas phase as well as between different phases including aerosols and clouds.
The students will also acquire a good understanding of atmospheric environmental problems including air pollution, stratospheric ozone destruction and changes in the oxidative capacity of the global atmosphere.
Content- Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources
- Multiphase chemistry: heterogeneous kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions
Lecture notesVorlesungsunterlagen (Folien) werden laufend während des Semesters jeweils mind. 2 Tage vor der Vorlesung zur Verfügung gestellt.
Prerequisites / NoticeAttendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent is a pre-requisite.