Das Frühjahrssemester 2021 findet sicher bis Ostern online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die Informationen der Dozierenden.

401-3531-00L  Differentialgeometrie I

SemesterHerbstsemester 2016
DozierendeU. Lang
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheDeutsch
KommentarDas Bachelor-Kernfach 401-3531-00L Differentialgeometrie I / Differential Geometry I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3531-00L Differentialgeometrie I / Differential Geometry I noch 401-3532-00L Differentialgeometrie II / Differential Geometry II für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.


KurzbeschreibungKurven im R^n, innere Geometrie von Hyperflächen im R^n, Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet. Der hyperbolische Raum. Differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen, Satz von Sard, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes.
LernzielEinführung in die elementare Differentialgeometrie und Differentialtopologie.
Inhalt- Differentialgeometrie im R^n: Kurventheorie, Untermannigfaltigkeiten und Immersionen, innere Geometrie von Hyperflächen, Gauss-Abbildung und -Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet, Indexsatz von Poincaré.
- Der hyperbolische Raum.
- Differentialtopologie: differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen in den R^n, Satz von Sard, Transversalität, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes.
LiteraturDifferentialgeometrie im R^n:
- Manfredo P. do Carmo: Differentialgeometrie von Kurven und Flächen
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Christian Bär: Elementare Differentialgeometrie
Differentialtopologie:
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds
- Victor Guillemin & Alan Pollack: Differential Topology
- Morris W. Hirsch: Differential Topology