402-0777-00L  Particle Accelerator Physics and Modeling I

SemesterHerbstsemester 2016
DozierendeA. Adelmann
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungThis is the first of two courses, introducing particle accelerators from a theoretical point of view and covers state-of-the-art modeling techniques. It emphasizes the multidisciplinary aspect of the field, both in methodology (numerical and computational methods) and with regard to applications such as medical, industrial, material research and particle physics.
LernzielYou understand the building blocks of particle accelerators. Modern analysis tools allows you to model state-of-the art particle accelerators. In some of the exercises you will be confronted with next generation machines. We will develop a Python simulation tool
(AcceLEGOrator) that reflects the theory from the lecture.
InhaltHere is the rough plan of the topics, however the actual pace may vary relative to this plan.

- Particle Accelerators an Overview
- Relativity for Accelerator Physicists
- Building Blocks of Particle Accelerators
- Lie Algebraic Structure of Classical Mechanics and Applications to Particle Accelerators
- Symplectic Maps & Analysis of Maps
- Particle Tracking
- Linear & Circular Machines
- Cyclotrons
- Free Electron Lasers
- Collective effects in linear approximation
- Preview of Particle Accelerator Physics and Modeling II
LiteraturParticle Accelerator Physics, H. Wiedemann, ISBN-13 978-3-540-49043-2, Springer

Theory and Design of Charged Particle Beams, M. Reiser, ISBN 0-471-30616-9, Wiley-VCH
Voraussetzungen / BesonderesPhysics, Computational Science (RW) at BSc. Level

This lecture is also suited for PhD. students