From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

402-0801-66L  Mechanical Metamaterials

SemesterAutumn Semester 2016
LecturersS. Huber
Periodicitynon-recurring course
Language of instructionEnglish

AbstractA mechanical metamaterial derives its static or dynamic properties not from its microscopic composition but rather through its clever engineering at larger scales. In this course we introduce the basic principles behind the design of modern mechanical metamaterials such as the use of Bragg scattering, local resonances, topological band-structures, and non-linear effects.
ObjectiveThe students should get acquainted with a modern toolbox in the design of mechanical metamaterials. Equipped with the knowledge of the key design principles, the students will be able to choose the appropriate approach to create a metamaterial with a pre-defined functionality either for dynamic applications such as vibration isolation, wave-guiding, or the design of a heat-diode, or static properties such as stress absorption or the design of mechanisms used in robotics.
Content1.) Wave propagation in continuous systems
2.) Wave properties
3.) Discrete systems
4.) Local resonances
5.) Topology by example
6.) Topological classification
7.) Static systems
8.) Non-linear waves
Lecture notesHand-outs will be available in class.