From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

529-0431-AAL  Physical Chemistry III: Molecular Quantum Mechanics

SemesterAutumn Semester 2018
LecturersB. H. Meier, M. Ernst
Periodicityevery semester recurring course
Language of instructionEnglish
CommentEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.


AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
LiteratureP.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics, 5th Edition, Oxford University Press 2010, ISBN 978-0-19-954142-3.

J.S. Townsend: A Modern Approach to Quantum Mechanics, 2nd Edition, University Science Books 2012, ISBN 978-1-89-138-978-8.