The spring semester 2021 will take place online until further notice. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

101-0188-00L  Seismic Design of Structures I

SemesterSpring Semester 2016
LecturersB. Stojadinovic
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThe following topics are covered: 1) origin and quantification of earthquake hazard; 2) seismic response of elastic and inelastic structures; 3) response history and response spectrum evaluation methods; 4) basis for seismic design codes; and 5) fundamentals of seismic design of structures. These topics are discussed in framework of performance-based seismic design.
ObjectiveAfter successfully completing this course the students will be able to:
1. Explain the nature of earthquake hazard and risk.
2. Explain the seismic response of simple linear and nonlinear single- and multi-degree-of-freedom structural systems and quantify it using response time history and response spectrum approaches.
3. Apply design code provisions to size the structural elements in a lateral force resisting system of a typical frame building.
ContentThis course initiates the series of two courses on seismic design of structures at ETHZ. Building on the material covered in the course on Structural Dynamics and Vibration Problems, the following fundamental topics are covered in this course: 1) origin and quantification of earthquake hazard; 2) seismic response of elastic and inelastic single- and multiple-degree-of-freedom structures; 3) response history and response spectrum seismic response evaluation methods; 4) basis for seismic design codes; and 5) fundamentals of seismic design of structures. These topics are discussed in framework of performance-based seismic design.
Lecture notesElectronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions.
Literature1. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2012
2. Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004
3. Erdbebensicherung von Bauwerken, 2nd edition, Hugo Bachmann, Birkhäuser, Basel, 2002
Prerequisites / NoticeETH Structural Dynamics and Vibration Problems course, or equivalent. Students are expected to be able to compute the response of elastic single- and multiple-degree-of-freedom structural systems in free vibration, as well as in forced vibration under harmonic and pulse excitation, to use the response spectrum method and to understand and be able to apply the modal response analysis method for multiple-degree-of-freedom structures. Knowledge of structural analysis and design of reinforced concrete or steel structures under static loads is expected. Familiarity with general-purpose numerical analysis software, such as Matlab, and structural analysis software, such as SAP2000, is desirable.