227-0056-00L  Semiconductor Devices

SemesterSpring Semester 2016
LecturersC. Bolognesi
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThe course covers the basic principles of semiconductor devices in micro-, opto-, and power electronics. It imparts knowledge both of the basic physics and on the operation principles of pn-junctions, diodes, contacts, bipolar transistors, MOS devices, solar cells, photodetectors, LEDs and laser diodes.
ObjectiveUnderstanding of the basic principles of semiconductor devices in micro-, opto-, and power electronics.
ContentBrief survey of the history of microelectronics. Basic physics: Crystal structure of solids, properties of silicon and other semiconductors, principles of quantum mechanics, band model, conductivity, dispersion relation, equilibrium statistics, transport equations, generation-recombination (G-R), Quasi-Fermi levels. Physical and electrical properties of the pn-junction. pn-diode: Characteristics, small-signal behaviour, G-R currents, ideality factor, junction breakdown. Contacts: Schottky contact, rectifying barrier, Ohmic contact, Heterojunctions. Bipolar transistor: Operation principles, modes of operation, characteristics, models, simulation. MOS devices: Band diagram, MOSFET operation, CV- and IV characteristics, frequency limitations and non-ideal behaviour. Optoelectronic devices: Optical absorption, solar cells, photodetector, LED, laser diode.
Lecture notesScript of the slides.
LiteratureThe lecture course follows the book Neamen, Semiconductor Physics and Devices, ISBN 978-007-108902-9, Fr. 89.00
Prerequisites / NoticeQualifications: Physics I+II