Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

102-0227-00L  Systems Analysis and Mathematical Modeling in Urban Water Management

SemesterAutumn Semester 2016
LecturersE. Morgenroth, M. Maurer
Periodicityyearly recurring course
Language of instructionEnglish


AbstractSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
ObjectiveThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
ContentThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Prerequisites / NoticeThis course will be offered together with the course Process Engineering Ia. It is advantageous to follow both courses simultaneously.