The spring semester 2021 will take place online until further notice. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

402-0715-00L  Low Energy Particle Physics

SemesterAutumn Semester 2016
LecturersA. S. Antognini, P. A. Schmidt-Wellenburg
Periodicityyearly recurring course
Language of instructionEnglish


AbstractLow energy particle physics provides complementary information to high energy physics with colliders. In this lecture, we will concentrate on selected experiments, using mainly neutrons and muons, which have significantly improved our understanding of particle physics today.
ObjectiveThe course aims to provide an introduction to selected advanced topics in low energy particle physics with neutrons and muons.
ContentLow energy particle physics provides complementary information to high energy physics with colliders. At the Large Hadron Collider one directly searches for new particles at energies up to the TeV range. In a complementary way, low energy particle physics indirectly probes the existence of such particles and provides constraints for "new physics", making use of precision and high intensities.

Besides the sensitivity to effects related with new physics (e.g. lepton flavor violation, symmetry violations, CPT tests, search for electric dipole moments, new low mass exchange bosons etc.), low energy physics provides the best test of QED (electron g-2), the best tests of bound-state QED (atomic physics and exotic atoms), precise determinations of fundamental constants, information about the CKM matrix, precise information on the weak and strong force even in the non-perturbative regime etc.

In this lecture, we will concentrate on selected experiments, using mainly neutrons and muons, which have significantly improved our understanding of particle physics today. Starting from a general introduction on high intensity/high precision particle physics and the main characteristics of muons and neutrons and their production, we will then focus on the discussion of fundamental problems and ground-breaking experiments:

- Production and characteristics of muon and neutron beams
- Ultracold neutron production
- Measurement of the neutron lifetime and electric dipole moment
- The neutron in the gravitational field and its electric charge
- Muon and neutron decay correlations
- Lepton flavour violations with muons to search for new physics
- What atomic physics can do for particle physics and vice versa
- Laser experiments at accelerators
- From myonic hydrogen to the proton structure and bound-state QED
- From pionic hydrogen to the strong interaction and effective field theories
- etc.
LiteratureGolub, Richardson & Lamoreaux: "Ultra-Cold Neutrons"
Rauch & Werner: "Neutron Interferometry"
Carlile & Willis: "Experimental Neutron Scattering"
Byrne: "Neutrons, Nuclei and Matter"
Klapdor-Kleingrothaus: "Non Accelerator Particle Physics"
Prerequisites / NoticeEinführung in die Kern- und Teilchenphysik / Introduction to Nuclear- and Particle-Physics