Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

227-0689-00L  System Identification

SemesterHerbstsemester 2016
DozierendeR. Smith
Periodizitätjährlich wiederkehrende Veranstaltung

KurzbeschreibungTheory and techniques for the identification of dynamic models from experimentally obtained system input-output data.
LernzielTo provide a series of practical techniques for the development of dynamical models from experimental data, with the emphasis being on the development of models suitable for feedback control design purposes. To provide sufficient theory to enable the practitioner to understand the trade-offs between model accuracy, data quality and data quantity.
InhaltIntroduction to modeling: Black-box and grey-box models; Parametric and non-parametric models; ARX, ARMAX (etc.) models.

Predictive, open-loop, black-box identification methods. Time and frequency domain methods. Subspace identification methods.

Optimal experimental design, Cramer-Rao bounds, input signal design.

Parametric identification methods. On-line and batch approaches.

Closed-loop identification strategies. Trade-off between controller performance and information available for identification.
Literatur"System Identification; Theory for the User" Lennart Ljung, Prentice Hall (2nd Ed), 1999.

"Dynamic system identification: Experimental design and data analysis", GC Goodwin and RL Payne, Academic Press, 1977.
Voraussetzungen / BesonderesControl systems (227-0216-00L) or equivalent.