Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

# 406-0204-AAL  Electrodynamics

 Semester Herbstsemester 2016 Dozierende N. Beisert Periodizität jedes Semester wiederkehrende Veranstaltung Lehrsprache Englisch Kommentar Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.

 Kurzbeschreibung Derivation and discussion of Maxwell's equations, from the static limit to the full dynamical case. Wave equation, waveguides, cavities. Generation of electromagnetic radiation, scattering and diffraction of light. Structure of Maxwell's equations, relativity theory and covariance, Lagrangian formulation. Dynamics of relativistic particles in the presence of fields and radiation properties. Lernziel Develop a physical understanding for static and dynamic phenomena related to (moving) charged objects and understand the structure of the classical field theory of electrodynamics (transverse versus longitudinal physics, invariances (Lorentz-, gauge-)). Appreciate the interrelation between electric, magnetic, and optical phenomena and the influence of media. Understand a set of classic electrodynamical phenomena and develop the ability to solve simple problems independently. Apply previously learned mathematical concepts (vector analysis, complete systems of functions, Green's functions, co- and contravariant coordinates, etc.). Prepare for quantum mechanics (eigenvalue problems, wave guides and cavities). Inhalt Classical field theory of electrodynamics: Derivation and discussion of Maxwell equations, starting from the static limit (electrostatics, magnetostatics, boundary value problems) in the vacuum and in media and subsequent generalization to the full dynamical case (Faraday's law, Ampere/Maxwell law; potentials and gauge invariance). Wave equation and solutions in full space, half-space (Snell's law), waveguides, cavities, generation of electromagnetic radiation, scattering and diffraction of light (optics). Application to various specific examples. Discussion of the structure of Maxwell's equations, Lorentz invariance, relativity theory and covariance, Lagrangian formulation. Dynamicsof relativistic particles in the presence of fields and their radiation properties (synchrotron). Literatur J.D. Jackson, Classical ElectrodynamicsW.K.H Panovsky and M. Phillis, Classical electricity and magnetismL.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of continuus mediaA. Sommerfeld, Elektrodynamik, Optik (Vorlesungen über theoretische Physik)M. Born and E. Wolf, Principles of opticsR. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II