Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

401-3612-00L  Stochastic Simulation

SemesterHerbstsemester 2016
DozierendeF. Sigrist
Periodizität2-jährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungThis course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.
LernzielStochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.
InhaltExamples of simulations in different fields (computer science, statistics, statistical mechanics, operations research, financial mathematics). Generation of uniform random variables. Generation of random variables with arbitrary distributions (quantile transform, accept-reject, importance sampling), simulation of Gaussian processes and diffusions. The precision of simulations, methods for variance reduction. Introduction to Markov chains and Markov chain Monte Carlo (Metropolis-Hastings, Gibbs sampler, Hamiltonian Monte Carlo, reversible jump MCMC).
SkriptA script will be available in English.
LiteraturP. Glasserman, Monte Carlo Methods in Financial Engineering.
Springer 2004.

B. D. Ripley. Stochastic Simulation. Wiley, 1987.

Ch. Robert, G. Casella. Monte Carlo Statistical Methods.
Springer 2004 (2nd edition).
Voraussetzungen / BesonderesFamiliarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.