From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers via e-mail.

406-2284-AAL  Measure and Integration

SemesterSpring Semester 2017
LecturersM. Schweizer
Periodicityevery semester recurring course
Language of instructionEnglish
CommentEnrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.


AbstractIntroduction to abstract measure and integration theory, including the following topics: Caratheodory extension theorem, Lebesgue measure, convergence theorems, L^p-spaces, Radon-Nikodym theorem, product measures and Fubini's theorem, measures on topological spaces
ObjectiveBasic acquaintance with the abstract theory of measure and integration
ContentIntroduction to abstract measure and integration theory, including the following topics: Caratheodory extension theorem, Lebesgue measure, convergence theorems, L^p-spaces, Radon-Nikodym theorem, product measures and Fubini's theorem, measures on topological spaces
Lecture notesno lecture notes
Literature1. P.R. Halmos, "Measure Theory", Springer
2. Extra material: Lecture Notes by Emmanuel Kowalski and Josef Teichmann from spring semester 2012, http://www.math.ethz.ch/~jteichma/measure-integral_120615.pdf
3. Extra material: P. Cannarsa & T. D'Aprile, "Lecture Notes on Measure Theory and Functional Analysis", http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.