Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

401-3146-12L  Algebraic Geometry

SemesterSpring Semester 2017
LecturersR. Pink
Periodicityyearly recurring course
Language of instructionEnglish

AbstractThis course is an Introduction to Algebraic Geometry (algebraic varieties and schemes).
ObjectiveLearning Algebraic Geometry.
LiteraturePrimary reference:
* Ulrich Görtz and Torsten Wedhorn: Algebraic Geometry I, Advanced Lectures in Mathematics, Springer.

Secondary reference:
* Qing Liu: Algebraic Geometry and Arithmetic Curves, Oxford Science Publications.
* Robin Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, Springer.
* Siegfried Bosch: Algebraic Geometry and Commutative Algebra (Springer 2013).

Other good textbooks and online texts are:
* David Eisenbud, Joe Harris: The Geometry of Schemes, Graduate Texts in Mathematics, Springer.
* Ravi Vakil, Foundations of Algebraic Geometry,
* Jean Gallier and Stephen S. Shatz, Algebraic Geometry

"Classical" Algebraic Geometry over an algebraically closed field:
* Joe Harris, Algebraic Geometry, A First Course, Graduate Texts in Mathematics, Springer.
* J.S. Milne, Algebraic Geometry,

Further readings:
* Günter Harder: Algebraic Geometry 1 & 2
* I. R. Shafarevich, Basic Algebraic geometry 1 & 2, Springer-Verlag.
* Alexandre Grothendieck et al.: Elements de Geometrie Algebrique EGA
* Saunders MacLane: Categories for the Working Mathematician, Springer-Verlag.
Prerequisites / NoticeRequirement: Some knowledge of Commutative Algebra.