# 401-3146-12L Algebraic Geometry

Semester | Spring Semester 2017 |

Lecturers | R. Pink |

Periodicity | yearly recurring course |

Language of instruction | English |

Abstract | This course is an Introduction to Algebraic Geometry (algebraic varieties and schemes). |

Objective | Learning Algebraic Geometry. |

Literature | Primary reference: * Ulrich Görtz and Torsten Wedhorn: Algebraic Geometry I, Advanced Lectures in Mathematics, Springer. Secondary reference: * Qing Liu: Algebraic Geometry and Arithmetic Curves, Oxford Science Publications. * Robin Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, Springer. * Siegfried Bosch: Algebraic Geometry and Commutative Algebra (Springer 2013). Other good textbooks and online texts are: * David Eisenbud, Joe Harris: The Geometry of Schemes, Graduate Texts in Mathematics, Springer. * Ravi Vakil, Foundations of Algebraic Geometry, http://math.stanford.edu/~vakil/216blog/ * Jean Gallier and Stephen S. Shatz, Algebraic Geometry http://www.cis.upenn.edu/~jean/algeom/steve01.html "Classical" Algebraic Geometry over an algebraically closed field: * Joe Harris, Algebraic Geometry, A First Course, Graduate Texts in Mathematics, Springer. * J.S. Milne, Algebraic Geometry, http://www.jmilne.org/math/CourseNotes/AG.pdf Further readings: * Günter Harder: Algebraic Geometry 1 & 2 * I. R. Shafarevich, Basic Algebraic geometry 1 & 2, Springer-Verlag. * Alexandre Grothendieck et al.: Elements de Geometrie Algebrique EGA * Saunders MacLane: Categories for the Working Mathematician, Springer-Verlag. |

Prerequisites / Notice | Requirement: Some knowledge of Commutative Algebra. |