Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

401-3602-00L  Applied Stochastic Processes

SemesterSpring Semester 2017
LecturersA.‑S. Sznitman
Periodicitytwo-yearly recurring course
Language of instructionEnglish

AbstractPoisson processes; renewal processes; Markov chains in discrete and in continuous time; some applications.
ObjectiveStochastic processes are a way to describe and study the behaviour of systems that evolve in some random way. In this course, the evolution will be with respect to a scalar parameter interpreted as time, so that we discuss the temporal evolution of the system. We present several classes of stochastic processes, analyse their properties and behaviour and show by some examples how they can be used. The main emphasis is on theory; in that sense, "applied" should be understood to mean "applicable".
LiteratureR. N. Bhattacharya and E. C. Waymire, "Stochastic Processes with Applications", SIAM (2009), available online:
R. Durrett, "Essentials of Stochastic Processes", Springer (2012), available online:
M. Lefebvre, "Applied Stochastic Processes", Springer (2007), available online:
S. I. Resnick, "Adventures in Stochastic Processes", Birkhäuser (2005)
Prerequisites / NoticePrerequisites are familiarity with (measure-theoretic) probability theory as it is treated in the course "Probability Theory" (401-3601-00L).