# 401-3132-00L Commutative Algebra

Semester | Autumn Semester 2017 |

Lecturers | P. D. Nelson |

Periodicity | yearly recurring course |

Language of instruction | English |

Abstract | This course provides an introduction to commutative algebra as a foundation for and first steps towards algebraic geometry. |

Objective | We shall cover approximately the material from --- most of the textbook by Atiyah-MacDonald, or --- the first half of the textbook by Bosch. Topics include: * Basics about rings, ideals and modules * Localization * Primary decomposition * Integral dependence and valuations * Noetherian rings * Completions * Basic dimension theory |

Literature | Primary Reference: 1. "Introduction to Commutative Algebra" by M. F. Atiyah and I. G. Macdonald (Addison-Wesley Publ., 1969) Secondary Reference: 2. "Algebraic Geometry and Commutative Algebra" by S. Bosch (Springer 2013) Tertiary References: 3. "Commutative algebra. With a view towards algebraic geometry" by D. Eisenbud (GTM 150, Springer Verlag, 1995) 4. "Commutative ring theory" by H. Matsumura (Cambridge University Press 1989) 5. "Commutative Algebra" by N. Bourbaki (Hermann, Masson, Springer) |

Prerequisites / Notice | Prerequisites: Algebra I (or a similar introduction to the basic concepts of ring theory). |