The spring semester 2021 will certainly take place online until Easter. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

401-2303-00L  Complex Analysis

SemesterAutumn Semester 2017
LecturersR. Pandharipande
Periodicityyearly recurring course
Language of instructionGerman


AbstractComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
ObjectiveWorking Knowledge with functions of one complex variables; in particular applications of the residue theorem
LiteratureTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

R.Remmert: Theory of Complex Functions. Springer Verlag