# 401-3461-00L Functional Analysis I

Semester | Autumn Semester 2017 |

Lecturers | A. Carlotto |

Periodicity | yearly recurring course |

Language of instruction | English |

Comment | At most one of the three course units (Bachelor Core Courses) 401-3461-00L Functional Analysis I 401-3531-00L Differential Geometry I 401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics or Applied Mathematics. |

Abstract | Baire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces; Fourier transform and applications. |

Objective | Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps. |

Lecture notes | Lecture Notes on "Funktionalanalysis I" by Michael Struwe |

Literature | A primary reference for the course is the textbook by H. Brezis: Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. Other useful, and recommended references are the following: Elias M. Stein and Rami Shakarchi. Functional analysis (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011. Peter D. Lax. Functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002. Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991. |

Prerequisites / Notice | Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces). |