The spring semester 2021 will certainly take place online until Easter. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

401-3531-00L  Differential Geometry I

SemesterAutumn Semester 2017
LecturersD. A. Salamon
Periodicityyearly recurring course
Language of instructionEnglish
CommentAt most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics.


AbstractSubmanifolds of R^n, tangent bundle,
embeddings and immersions, vector fields, Lie bracket, Frobenius' Theorem.
Geodesics, exponential map, completeness, Hopf-Rinow.
Levi-Civita connection, parallel transport,
motions without twisting, sliding, and wobbling.
Isometries, Riemann curvature, Theorema Egregium.
Cartan-Ambrose-Hicks, symmetric spaces, constant curvature,
Hadamard's theorem.
ObjectiveIntroduction to Differential Geometry.
Submanifolds of Euclidean space, tangent bundle,
embeddings and immersions, vector fields and flows,
Lie bracket, foliations, the Theorem of Frobenius.
Geodesics, exponential map, injectivity radius, completeness
Hopf-Rinow Theorem, existence of minimal geodesics.
Levi-Civita connection, parallel transport, Frame bundle,
motions without twisting, sliding, and wobbling.
Isometries, the Riemann curvature tensor, Theorema Egregium.
Cartan-Ambrose-Hicks, symmetric spaces, constant curvature,
nonpositive sectional curvature, Hadamard's theorem.
LiteratureJoel Robbin and Dietmar Salamon "Introduction to Differential Geometry",
https://people.math.ethz.ch/~salamon/PREPRINTS/diffgeo.pdf