636-0706-00L  Spatio-Temporal Modelling in Biology

SemesterAutumn Semester 2017
LecturersD. Iber
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThis course focuses on modeling spatio-temporal problems in biology, in particular on the cell and tissue level. The main focus is on mechanisms and concepts, but mathematical and numerical techniques are introduced as required. Biological examples discussed in the course provide an introduction to key concepts in developmental biology.
ObjectiveStudents will learn state-of-the-art approaches to modelling spatial effects in dynamical biological systems. The course provides an introduction to dynamical system, and covers the mathematical analysis of pattern formation in growing, developing systems, as well as the description of mechanical effects at the cell and tissue level. The course also provides an introduction to image-based modelling, i.e. the use of microscopy data for model development and testing. The course covers classic as well as current approaches and exposes students to open problems in the field. In this way, the course seeks to prepare students to conduct research in the field. The course prepares students for research in developmental biology, as well as for applications in tissue engineering, and for biomedical research.
ContentLECTURES
1. Introduction to Modelling in Biology (Sep 22)
Sep 29th: NO LECTURE & NO TUTORIAL
2. Dynamical Systems (Oct 6)
3. Morphogen Gradients (Oct 13)
4. Mathematical Description of Growing Biological Systems (Oct 20)
5. Travelling Waves & Wave Pinning (Oct 27th)
6 Turing Patterns (Nov 3)
Nov 10th: NO LECTURE & NO TUTORIAL (ETH FACULTY RETREAT)
7. Chemotaxis & Branching Processes (Nov 17th)
8. Image-Based Modelling (Nov 24th )
9. Tissue Mechanics (Dec 1st)
10. Growth Control (Dec 8th)
11. Cell-cell Signalling (Dec 15th - Dr Boareto)
12. Summary (Dec 22nd)

TUTORIALS
Sep 29: Mathematical Methods required for the course
Oct 6: Case Study: I: Dorso-ventral axis formation
Oct 13: Dynamical Systems
Oct 20: Morphogen Gradients
Oct 27: Growing Domains
Nov 3: Travelling Waves
Nov 17: Turing Patterns
Nov 24: Chemotaxis & Branching Processes
Dec 1: Case Study II: Organogenesis & Image-based Modelling
Dec 8: Tissue Mechanics
Dec 15: Cell-cell Signalling
Dec 22: Summary, Open Questions & Mock Exam
Lecture notesAll lecture material will be made available online
Link
LiteratureThe lecture course is not based on any textbook. The following textbooks are related to some of its content. The textbooks may be of interest for further reading, but are not necessary to follow the course:

Murray, Mathematical Biology, Springer
Forgacs and Newman, Biological Physics of the Developing Embryo, CUP
Keener and Sneyd, Mathematical Physiology, Springer
Fall et al, Computational Cell Biology, Springer
Szallasi et al, System Modeling in Cellular Biology, MIT Press
Wolkenhauer, Systems Biology
Kreyszig, Engineering Mathematics, Wiley
Prerequisites / NoticeThe course is self-contained. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques.