Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

401-3901-00L  Mathematical Optimization

SemesterHerbstsemester 2018
DozierendeR. Weismantel
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungMathematical treatment of diverse optimization techniques.
LernzielAdvanced optimization theory and algorithms.
Inhalt1) Linear optimization: The geometry of linear programming, the simplex method for solving linear programming problems, Farkas' Lemma and infeasibility certificates, duality theory of linear programming.

2) Nonlinear optimization: Lagrange relaxation techniques, Newton method and gradient schemes for convex optimization.

3) Integer optimization: Ties between linear and integer optimization, total unimodularity, complexity theory, cutting plane theory.

4) Combinatorial optimization: Network flow problems, structural results and algorithms for matroids, matchings, and, more generally, independence systems.
Literatur1) D. Bertsimas & R. Weismantel, "Optimization over Integers". Dynamic Ideas, 2005.

2) A. Schrijver, "Theory of Linear and Integer Programming". John Wiley, 1986.

3) D. Bertsimas & J.N. Tsitsiklis, "Introduction to Linear Optimization". Athena Scientific, 1997.

4) Y. Nesterov, "Introductory Lectures on Convex Optimization: a Basic Course". Kluwer Academic Publishers, 2003.

5) C.H. Papadimitriou, "Combinatorial Optimization". Prentice-Hall Inc., 1982.
Voraussetzungen / BesonderesLinear algebra.