Das Frühjahrssemester 2021 findet bis auf Weiteres online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die Informationen der Dozierenden.

401-1261-07L  Analysis I

SemesterHerbstsemester 2018
DozierendeP. S. Jossen
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheDeutsch


KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturH. Amann, J. Escher: Analysis I
https://link.springer.com/book/10.1007/978-3-7643-7756-4

J. Appell: Analysis in Beispielen und Gegenbeispielen
https://link.springer.com/book/10.1007/978-3-540-88903-8

R. Courant: Vorlesungen über Differential- und Integralrechnung
https://link.springer.com/book/10.1007/978-3-642-61988-5

O. Forster: Analysis 1
https://link.springer.com/book/10.1007/978-3-658-00317-3

H. Heuser: Lehrbuch der Analysis
https://link.springer.com/book/10.1007/978-3-322-96828-9

K. Königsberger: Analysis 1
https://link.springer.com/book/10.1007/978-3-642-18490-1

W. Walter: Analysis 1
https://link.springer.com/book/10.1007/3-540-35078-0

V. Zorich: Mathematical Analysis I (englisch)
https://link.springer.com/book/10.1007/978-3-662-48792-1

A. Beutelspacher: "Das ist o.B.d.A. trivial"
https://link.springer.com/book/10.1007/978-3-8348-9599-8

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
https://link.springer.com/book/10.1007/978-3-642-28646-9