227-0427-00L  Signal Analysis, Models, and Machine Learning

SemesterHerbstsemester 2018
DozierendeH.‑A. Loeliger
Periodizitätjährlich wiederkehrende Veranstaltung

KurzbeschreibungMathematical methods in signal processing and machine learning.
I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity.
II. Learning linear and nonlinear functions and filters: neural networks, kernel methods.
III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, Gaussian models with sparse events.
LernzielThe course is an introduction to some basic topics in signal processing and machine learning.
InhaltPart I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-components analysis.
Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods.
Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximization, linear Gaussian models with sparse events.
SkriptLecture notes.
Voraussetzungen / BesonderesPrerequisites:
- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory