From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

851-0252-13L  Network Modeling

SemesterAutumn Semester 2018
LecturersC. Stadtfeld, V. Amati
Periodicityyearly recurring course
Language of instructionEnglish
CommentParticularly suitable for students of D-INFK

AbstractNetwork Science is a distinct domain of data science that focuses on relational systems. Various models have been proposed to describe structures and dynamics of networks. Statistical and numerical methods have been developed to fit these models to empirical data. Emphasis is placed on the statistical analysis of (social) systems and their connection to social theories and data sources.
ObjectiveStudents will be able to develop hypotheses that relate to the structures and dynamics of (social) networks, and tests those by applying advanced statistical network methods such as stochastic actor-oriented models (SAOMs) and exponential random graph models (ERGMs). Students will be able to explain and compare various network models, and develop an understanding how those can be fit to empirical data. This will enable them to independently address research questions from various social science fields.