Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

227-0158-00L  Semiconductor Devices: Transport Theory and Monte Carlo Simulation

SemesterSpring Semester 2019
Periodicityyearly recurring course
CourseDoes not take place this semester.
Language of instructionEnglish

AbstractThe first part deals with semiconductor transport theory including the necessary quantum mechanics.
In the second part, the Boltzmann equation is solved with the stochastic methods of Monte Carlo simulation.
The exercises address also TCAD simulations of MOSFETs. Thus the topics include theoretical physics,
numerics and practical applications.
ObjectiveOn the one hand, the link between microscopic physics and its concrete application in device simulation is established; on the other hand, emphasis is also laid on the presentation of the numerical techniques involved.
ContentQuantum theoretical foundations I (state vectors, Schroedinger and Heisenberg picture). Band structure (Bloch theorem, one dimensional periodic potential, density of states). Pseudopotential theory (crystal symmetries, reciprocal lattice, Brillouin zone).
Semiclassical transport theory (Boltzmann transport equation (BTE), scattering processes, linear transport).<br>
Monte Carlo method (Monte Carlo simulation as solution method of the BTE, algorithm, expectation values).<br>
Implementational aspects of the Monte Carlo algorithm (discretization of the Brillouin zone, self-scattering according to Rees, acceptance- rejection method etc.). Bulk Monte Carlo simulation (velocity-field characteristics, particle generation, energy distributions, transport parameters). Monte Carlo device simulation (ohmic boundary conditions, MOSFET simulation).
Quantum theoretical foundations II (limits of semiclassical transport theory, quantum mechanical derivation of the BTE, Markov-Limes).
Lecture notesLecture notes (in German)