Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

701-1450-00L  Conservation Genetics

SemesterFrühjahrssemester 2020
DozierendeR. Holderegger, M. C. Fischer, F. Gugerli
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungThe course deals with conservation genetics and its practical applications. It introduces the genetic theories of conservation genetics, such as inbreeding depression in small populations or fragmentation. The course also shows how genetic methods such as eDNA and metabarcoding are used in conservation management, and it critically discusses the benefits and limits of conservation genetics.
LernzielGenetic and evolutionary argumentation is an important feature of conservation biology. The course equips students with knowledge on conservation genetics and its applications in conservation management. The course introduces the main theories of conservation genetics and shows how genetic methods are used in conservation management, and it critically discusses the benefits and limits of conservation genetics. Practical examples dealing with animals and plants are presented.
InhaltThere are 4 hours of lectures, presentations and group work per week. Students also have to spend about 3 hours per week on preparatory work for the following week. Every week, one subject will be presented by one of three lecturers.

Overview of themes:
Barcoding, eDNA metabarcoding and genetic monitoring; effects of small population size, genetic drift and inbreeding; neutral and adaptive genetic diversity; hybridization; gene flow, fragmentation and connectivity.

Specific topics:
(1) Species and individual identification: barcoding; metabarcoding; eDNA; estimation of census population size; habitat use and genetic monitoring.
(2) Small population size; bottlenecks; genetic drift; inbreeding and inbreeding depression; effective population size.
(3) Adaptive genetic diversity; neutral and adaptive genetic variation; importance of adaptive genetic diversity; methods to measure adaptive genetic variation.
(4) Hybridization; gene introgression; gene flow across species boundaries.
(5) Half day excursion: practical example of conservation genetics on fragmentation.
(6) Discussion and evaluation of excursion; historical and contemporary gene flow and dispersal; fragmentation and connectivity.
(7) Written examination.
SkriptNo script; handouts and material for downloading will be provided.
LiteraturThere is no textbook for this course, but the following books are recommended:
Allendorf F.W., Luikart G.; Aitken S.N. 2013. Conservation and the Genetics of Populations, 2nd edition. Wiley, Oxford.
Frankham R., Ballou J.D., Briscoe D.A. 2010. Introduction to Conservation Genetics, 2nd edition. Cambridge University Press, Cambridge.

The following book and booklets in German are targeted to conservation professionals:
Holderegger R., Segelbacher G. (eds.). 2016. Naturschutzgenetik. Ein Handbuch für die Praxis. Haupt, Bern.
Csencsics D., Gugerli F. 2017. Naturschutzgenetik. WSl Berichte 60: 1-82 (free download: https://www.wsl.ch/de/publikationensuchen/wsl-berichte.html)
Voraussetzungen / BesonderesRequirements:
Students must have a good background in genetics as well as in ecology and evolution. The courses "Population and Quantitative Genetics" or "Evolutionary Genetics" should have been attended.

Examination:
A final written examination on the content of the course and the excursion are integral parts of the course.

Teaching forms:
The course needs the active participation of students. It consists of lectures, group work, presentations, discussions, reading and a half-day excursion.