The spring semester 2021 will take place online until further notice. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

651-4076-00L  Anisotropical Behaviour and Rheology of Rocks

SemesterSpring Semester 2016
Periodicityyearly recurring course
CourseDoes not take place this semester.
Language of instructionEnglish

Catalogue data

AbstractAnisotropy of rocks: from laboratory measurements to numerical prediction. Link between structural geology, petrology and geophysics.
Rheology of rocks: from laboratory measurements to flow laws used for numerical modelling. Special emphasis on plastic deformation.
ObjectiveGive laboratory experience for the determination of physical properties of rocks and comparison with the numerical prediction.
ContentDescription of physical properties (seismic, thermal and electrical conductivity, permeability etc.)
Elasticity in isotropic media.
Microscopic aspects of anisotropy.
Elasticity and seismic velocities in crystals.
Elasticity in polyphase rocks.
Exercises with software (Mainprice) to calculate seismic properties.
Methods for the measurements of seismic properties of rocks in Laboratory. Practice on the bench with the oscilloscope.
Anisotropy at different scales.

Rheology and deformation mechanism: from single phase to polyphase rocks (solid state).
Measurements and elaboration of LPO, SPO using OIM, Beartex, Surfor and Paror software.
Introduction to rheology and flow laws.
Deformation mechanism maps, crustal strength profiles and extrapolation from experiment to nature .
Experimental rock deformation techniques (stress-strain curves etc.).
Experimental deformation in Laboratory. Practice using uniaxial experimental set-up. Example in the brittle field.
Experimental deformation practical in the Paterson gas rig.
LiteratureProperties of earth and planetary materials at high pressure and temperature (M. Manghnani and T. Yagi eds.) (1998). AGU Geophys. Monograph. 101, Washington DC. p562

Handbook of physical constants (P. Sydney and JR Clark eds.) (1966). GSA Memoir 97, New Haven, p587

Wave fields in real media: wave peropagation in anisotropic, anelastic and porous media. M. Carcione. (2001). Pergamon press, Amsterdam, p390

Experimental rock deformation. The brittle field. M.S. Paterson. (1978). Springer Verlag, Berlin, p254.

Phisical properties of crystals. J.F. Nye (1972) University press, Oxford. p322.

Mineral physics and crystallography: a handbook of physical consants. (T.J. Ahrens ed.). 1995. AGU reference shelf 2, Washington DC, p354

Rock physics and phase relations: a handbook of physical consants. (T.J. Ahrens ed.). 1995. AGU reference shelf 3, Washington DC, p236

Introduction to the physics of the earth’s interior. J.-P. Poirier. (1991) Cambridge University press. Cambridge p264

Introduction to the physics of rocks. Y. Gueguen and V. Palciauskas.(1994). Princeton University press. Princeton p294

Physical properties of rocks and minerals. (R.S.Charmicael ed.). (1989). CRC press. Boca Raton, p741.

Seismic anisotropy in the earth. V. Babuska and M. Cara (1991). Kluwer. Dordrtecht. p217.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits3 credits
ExaminersK. Kunze, A. S. Zappone
Typeend-of-semester examination
Language of examinationEnglish
RepetitionA repetition date will be offered in the first two weeks of the semester immediately consecutive.

Learning materials

No public learning materials available.
Only public learning materials are listed.


651-4076-00 GAnisotropical Behaviour and Rheology of Rocks
Does not take place this semester.
2 hrs


No information on groups available.


There are no additional restrictions for the registration.

Offered in

Earth Sciences MasterStructural GeologyWInformation