327-1201-00L  Transport Phenomena I

SemesterHerbstsemester 2016
DozierendeH. C. Öttinger
Periodizitätjährlich wiederkehrende Veranstaltung


KurzbeschreibungPhenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; fundamentals, applications, and simulations
LernzielThe teaching goals of this course are on five different levels:
(1) Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers, ...
(2) Ability to use the fundamental concepts in applications
(3) Insight into the role of boundary conditions
(4) Knowledge of a number of applications
(5) Flavor of numerical techniques: finite elements, finite differences, lattice Boltzmann, Brownian dynamics, ...
InhaltApproach to Transport Phenomena
Diffusion Equation
Brownian Dynamics
Refreshing Topics in Equilibrium Thermodynamics
Balance Equations
Forces and Fluxes
Measuring Transport Coefficients
Pressure-Driven Flows
Driven Separations
Complex Fluids
SkriptA detailed manuscript is provided; this manuscript will be developed into a book entitled "A Modern Course in Transport Phenomena" by David C. Venerus and Hans Christian Öttinger
Literatur1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd Ed. (Wiley, 2001)
2. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, 2nd Ed. (Dover, 1984)
3. W. M. Deen, Analysis of Transport Phenomena (Oxford University Press, 1998)
4. R. B. Bird, Five Decades of Transport Phenomena (Review Article), AIChE J. 50 (2004) 273-287
Voraussetzungen / BesonderesComplex numbers. Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Equilibrium thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms). Maxwell equations. Programming and simulation techniques (Matlab, Monte Carlo simulations).


Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeH. C. Öttinger
RepetitionEs wird ein Repetitionstermin in den ersten zwei Wochen des unmittelbar nachfolgenden Semesters angeboten.
Zusatzinformation zum PrüfungsmodusA mid-term assessment test is offered, with problems similar to those in the exercises and the end-of-semester examination. If passed successfully, this assessment test can be used to increase the mark for the end-of-semester examination (written, 1.5 hours) by 0.25. The final mark for the course is the weighted average of the marks for the end-of-semester examination (80%) and for the project work (20%).
Written aids: A clean copy of the official manuscript.


Es werden nur die öffentlichen Lernmaterialien aufgeführt.


327-1201-00 GTransport Phenomena I
13:00-14:00 Vorlesung
14:15-15:15 Übungen in zwei Gruppen
15:30-16:30 Vorlesung
4 Std.
Mo13-17HCP E 47.3 »
14-16HCP E 47.1 »
H. C. Öttinger


Keine Informationen zu Gruppen vorhanden.


Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

Materialwissenschaft MasterKernfächerW DrInformation
Mathematik MasterMaterial Modelling and SimulationWInformation
Rechnergestützte Wissenschaften BachelorWahlfächerWInformation
Rechnergestützte Wissenschaften MasterWahlfächerWInformation