401-3531-00L  Differentialgeometrie I

SemesterHerbstsemester 2016
DozierendeU. Lang
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheDeutsch
KommentarDas Bachelor-Kernfach 401-3531-00L Differentialgeometrie I / Differential Geometry I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3531-00L Differentialgeometrie I / Differential Geometry I noch 401-3532-00L Differentialgeometrie II / Differential Geometry II für den Bachelor-Abschluss anrechnen liessen.
Ausserdem ist höchstens eines der drei Fächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
im Master-Studiengang Mathematik anrechenbar.



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-3531-00 VDifferentialgeometrie I4 Std.
Di10-12HG E 7 »
Do10-12HG G 5 »
U. Lang
401-3531-00 UDifferentialgeometrie I
Do 13-14 oder Do 14-15 oder Fr 13-14
1 Std.
Do13-14CAB G 52 »
14-15HG E 21 »
14-15ML H 41.1 »
Fr13-14HG G 26.3 »
U. Lang

Katalogdaten

KurzbeschreibungKurven im R^n, innere Geometrie von Hyperflächen im R^n, Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet. Der hyperbolische Raum. Differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen, Satz von Sard, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes.
LernzielEinführung in die elementare Differentialgeometrie und Differentialtopologie.
Inhalt- Differentialgeometrie im R^n: Kurventheorie, Untermannigfaltigkeiten und Immersionen, innere Geometrie von Hyperflächen, Gauss-Abbildung und -Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet, Indexsatz von Poincaré.
- Der hyperbolische Raum.
- Differentialtopologie: differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen in den R^n, Satz von Sard, Transversalität, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes.
LiteraturDifferentialgeometrie im R^n:
- Manfredo P. do Carmo: Differentialgeometrie von Kurven und Flächen
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Christian Bär: Elementare Differentialgeometrie
Differentialtopologie:
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds
- Victor Guillemin & Alan Pollack: Differential Topology
- Morris W. Hirsch: Differential Topology

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte10 KP
PrüfendeU. Lang
FormSessionsprüfung
PrüfungsspracheDeutsch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 30 Minuten
Zusatzinformation zum PrüfungsmodusPrüfungssprache: Deutsch oder Englisch / Language of examination: English or German
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
Lehr-DokumentenablageLehr-Dokumentenablage / Teaching document repository
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Hochenergie-Physik MSc (Joint Master mit EP Paris)Wahlfächer in MathematikWInformation
Mathematik BachelorKernfächer aus Bereichen der reinen MathematikWInformation
Mathematik Master(auch Bachelor-)Kernfächer aus Bereichen der reinen MathematikWInformation
Physik BachelorAuswahl an Lehrveranstaltungen aus höheren SemesternWInformation
Physik MasterAuswahl: MathematikWInformation