401-0141-00L  Lineare Algebra und Numerische Mathematik

SemesterHerbstsemester 2016
DozierendeV. C. Gradinaru, R. Käppeli
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheDeutsch



Lehrveranstaltungen

NummerTitelUmfangDozierende
401-0141-00 VLineare Algebra und Numerische Mathematik3 Std.
Mi08-10HCI G 7 »
Do/2w10-12HG F 1 »
V. C. Gradinaru, R. Käppeli
401-0141-00 ULineare Algebra und Numerische Mathematik
Übungen Mi 13-14 oder Mi 14-15 gemäss Gruppeneinteilung.

Zusätzlich wird eine Zentralpräsenz angeboten:
Mo 16-19 im HCP E 47.2 (Hönggerberg)
Mi 16-19 im HCP E 47.2 (Hönggerberg)
Fr 17-20 im HG E 41 (Zentrum)
1 Std.
Mi13-14HCI D 4 »
13-14HCI D 6 »
13-14HCI F 2 »
13-14HIL B 21 »
13-14HIL E 10.1 »
13-14HIT F 32 »
13-14HPK D 24.2 »
14-15HCI D 4 »
14-15HCI D 6 »
14-15HCI F 2 »
14-15HIL B 21 »
14-15HIL E 10.1 »
14-15HIT F 32 »
14-15HPK D 24.2 »
V. C. Gradinaru, R. Käppeli

Katalogdaten

KurzbeschreibungEinführung in die Lineare Algebra und die Numerische Mathematik unter Betonung sowohl abstrakter als auch algorithmischer Aspekte.
LernzielGrundkenntnisse in linearer Algebra und Numerik erwerben.
Einfuehrung in abstraktes und algorithmisches Denken auf der Grundlage von mathematischen Konzepten und Modellen.
Faehigkeit, einfache Techniken aus der numerischen linearen Algebra geeignet auszuwaehlen, anzuwenden und zu implementieren (in MATLAB).
Inhalt1 Lineare Gleichungssysteme
1.1 Lineare Gleichungen
1.1.1 Definition und Notation
1.1.2 Loesungen linearer Gleichungen
1.1.3 Visualisierung von Loesungsmengen linearer Gleichungen
1.2 Lineare Gleichungssysteme: Einfuehrung
1.2.1 Definition und Loesungsmengen
1.2.2 Matrixnotation
1.3 Lineare Gleichungssysteme: Anwendungsbeispiele
1.3.1 Additive Ueberlagerung: Mischungsprobleme
1.3.2 Input-Output-Modelle aus der Oekonomie (Leontief-Modelle)
1.3.3 Signalverarbeitung
1.3.4 Flussnetzwerke
1.4 Gausselimination
1.4.1 Eliminationsidee
1.4.2 Zeilenumformungen
1.4.3 Zeilenstufenform
1.4.4 Gausselimination: Algorithmus
1.4.5 Loesungsmengen linearer Gleichungssysteme
2 Rechnen mit Vektoren und Matrizen
2.1 Vektorrechnung im Rn
2.2 Linearkombinationen und Matrix-Vektor-Produkt
2.3 Matrixprodukt
2.4 Matrixkalkuel
2.5 Inverse Matrix
2.6 Transponierte Matrix
2.7 Blockmatrixoperationen
3 Unterraeume und Basen
3.1 Erzeugnisse und Unterraeume
3.2 Lineare Unabhaengigkeit, Basis und Dimension
3.3 Bild und Kern von Matrizen, Dimensionssatz
3.4 Koeffizientenvektoren und Basiswechsel

4 Der Euklidische Raum Rn
4.1 Das Euklidische Skalarprodukt
4.1.1 Definition und Eigenschaften
4.1.2 Laenge von Vektoren im Rn
4.1.3 Winkel
4.2 Abstand
4.2.1 Abstandsbegriff
4.2.2 Ergaenzung: Quadratische Formen
4.2.3 Orthogonale Projektion
4.3 Orthogonalitaet
4.3.1 Orthogonale Vektoren
4.3.2 Orthogonale Komplemente
4.3.3 Orthogonale Matrizen
4.3.4 Orthogonalisierung
4.3.5 Vektorprodukt in R3
4.4 Lineare Ausgleichsrechnung
4.4.1 Ueberbestimmte lineare Gleichungssysteme: Beispiele
4.4.2 Kleinste-Quadrate Loesung
4.4.3 Normalengleichungen
4.4.4 Orthogonalisierungstechniken
4.5 Volumenformen und Determinanten
4.5.1 Volumen
4.5.2 Determinanten
4.5.3 Determinantenformeln
4.5.4 Determinante und Matrixprodukt

5 Numerische lineare Algebra mit MATLAB
5.1 MATLAB: Grundlagen
5.1.1 Operationen mit Vektoren und Matrizen in MATLAB
5.1.2 Visualisierung in MATLAB
5.2 Rundungsfehler
5.3 Rechenaufwand
5.4 Duennbesetzte Matrizen
5.5 Loesen linearer Gleichungssysteme und linearer Ausgleichsprobleme
5.6 MATLAB-Projekte
5.6.1 Projekt: Ideale statische Fachwerke
5.6.2 Projekt: Entrauschen eines Bildes
5.6.3 Projekt: Netzglaettung
5.6.4 Projekt: Rekonstruktion eines Dreiecksnetzes
6 Lineare Abbildungen [optional]
6.1 Wiederholung: Vektoren und Koordinaten
6.2 Konzept der linearen Abbildung
* Abbildungseigenschaften
* Komposition
* Bild und Kern
* Affine Abbildungen
6.3 Matrixdarstellung
6.3.1 Definition
6.3.2 Matrixdarstellung bei Basiswechsel
6.4 Lineare Selbstabbildungen
6.5 Projektionen
* Orhtogonalprojektionen
6.6 Isometrien im Euklidischen Raum
6.6.1 Laengenerhaltung
6.6.2 Spiegelungen
6.6.3 Drehungen
6.6.3.1 Drehungen im R2
6.6.3.2 Drehungen im R3
7 Diagonalisierung
7.1 Motivation: Lineare Rekursionen
* Lineare skalare Mehrtermrekursionen
7.2 Matrixdiagonalisierung
7.2.1 Anwendung: Geschlossene Darstellung linearer Rekursionen
7.2.2 Anwendung: Matrixfunktionen
7.3 Rechnen in Cn
7.4 Eigenwerte und Eigenvektoren
7.5 Diagonalisierbarkeit
7.5.1 Allgemeine Kriterien
7.5.2 Diagonalisierbarkeit normaler Matrizen
SkriptFür weitere Informationen: http://www.sam.math.ethz.ch/~grsam/HS16/LABAUG/index.html
LiteraturK. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH

G. Strang, Lineare Algebra. Springer

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
Im Prüfungsblock fürBachelor-Studiengang Bauingenieurwissenschaften 2010; Ausgabe 20.08.2013 (Prüfungsblock)
Bachelor-Studiengang Bauingenieurwissenschaften 2014; Ausgabe 01.08.2016 (Prüfungsblock)
Bachelor-Studiengang Geomatik und Planung 2010; Ausgabe 27.02.2018 (Prüfungsblock)
Bachelor-Studiengang Umweltingenieurwissenschaften 2010; Ausgabe 29.10.2013 (Prüfungsblock)
Bachelor-Studiengang Umweltingenieurwissenschaften 2010; Ausgabe 07.03.2018 (Prüfungsblock)
ECTS Kreditpunkte5 KP
PrüfendeR. Käppeli, V. C. Gradinaru
FormSessionsprüfung
PrüfungsspracheDeutsch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 120 Minuten
Hilfsmittel schriftlich20 Seiten A4 eigenhaendig handschriftlich (!) verfasste Zusammenfassung, nicht ausgedruckt, nicht kopiert. Sonst keine Hilfsmittel zugelassen.
Falls die Lerneinheit innerhalb eines Prüfungsblockes geprüft wird, werden die Kreditpunkte für den gesamten bestandenen Block erteilt.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkVorlesungswebpage
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Bauingenieurwissenschaften BachelorBasisprüfungOInformation
Geomatik und Planung BachelorBasisprüfungOInformation
Umweltingenieurwissenschaften BachelorBasisprüfung (1. Sem.)OInformation