Das Frühjahrssemester 2021 findet grundsätzlich online statt. Neue Präsenzelemente ab 26. April werden von den Dozierenden mitgeteilt.

401-4463-62L  Fourier Analysis in Function Space Theory

SemesterHerbstsemester 2016
DozierendeT. Rivière
Periodizitäteinmalige Veranstaltung
LehrspracheEnglisch



Katalogdaten

KurzbeschreibungIn the most important part of the course, we will present the notion of Singular Integrals and Calderón-Zygmund theory as well as its application to the analysis of linear elliptic operators.
Lernziel
InhaltDuring the first lectures we will review the theory of tempered distributions and their Fourier transforms. We will go in particular through the notion of Fréchet spaces, Banach-Steinhaus for Fréchet spaces etc. We will then apply this theory to the Fourier characterization of Hilbert-Sobolev spaces.
In the second part of the course we will study fundamental pro­perties of the Hardy-Littlewood Maximal Function in relation with L^p spaces. We will then make a digression through the notion of Marcinkiewicz weak L^p spaces and Lorentz spaces. At this occa­sion we shall give in particular a proof of Aoki-Rolewicz theorem on the metrisability of quasi-normed spaces. We will introduce the preduals to the weak L^p spaces, the Lorentz L^{p',1} spaces as well as the general L^{p,q} spaces and show some applications of these dualities such as the improved Sobolev embeddings.
In the third part of the course, the most important one, we will present the notion of Singular Integrals and Calderón-Zygmund theory as well as its application to the analysis of linear elliptic operators.
This theory will naturally bring us, via the so called Littlewood-Paley decomposition, to the Fourier characterization of classical Hilbert and non Hilbert Function spaces which is one of the main goals of this course.
If time permits we shall present the notion of Paraproduct, Para­compositions and the use of Littlewood-Paley decomposition for estimating products and general non-linearities. We also hope to cover fundamental notions from integrability by compensation theory such as Coifman-Rochberg-Weiss commutator estimates and some of its applications to the analysis of PDE.
Literatur1) Elias M. Stein, "Singular Integrals and Differentiability Proper­ties of Functions" (PMS-30) Princeton University Press.
2) Javier Duoandikoetxea, "Fourier Analysis" AMS.
3) Loukas Grafakos, "Classical Fourier Analysis" GTM 249 Springer.
4) Loukas Grafakos, "Modern Fourier Analysis" GTM 250 Springer.
Voraussetzungen / BesonderesNotions from ETH courses in Measure Theory, Functional Analysis I and II (Fun­damental results in Banach and Hilbert Space theory, Fourier transform of L^2 Functions)

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeT. Rivière
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 180 Minuten
Zusatzinformation zum PrüfungsmodusThe exam takes place in the examination session Winter 2017 (repetition in the examination session Summer 2017).
Hilfsmittel schriftlichKeine
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Lehrveranstaltungen

NummerTitelUmfangDozierende
401-4463-62 VFourier Analysis in Function Space Theory3 Std.
Do13-15HG G 43 »
Fr13-14HG G 43 »
T. Rivière

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Doktorat Departement MathematikGraduate School / GraduiertenkollegWInformation
Mathematik MasterAuswahl: AnalysisWInformation