The spring semester 2021 will generally take place online. New presence elements as of April 26 will be communicated by the lecturers.

401-4831-66L  Mathematical Themes in General Relativity I

SemesterAutumn Semester 2016
LecturersA. Carlotto
Periodicitynon-recurring course
Language of instructionEnglish



Catalogue data

AbstractFirst part of a one-year course offering a rigorous introduction to general relativity, with special emphasis on aspects of current interest in mathematical research. Topics covered include: initial value formulation of the Einstein equations, causality theory and singularities, constructions of data sets by gluing or conformal methods, asymptotically flat spaces and positive mass theorems.
ObjectiveAcquisition of a solid and broad background in general relativity and mastery of the basic mathematical methods and ideas developed in such context and successfully exploited in the field of geometric analysis.
ContentLorentzian geometry; geometric review of special relativity; the Einstein equations and their basic classes of special solutions; the Einstein equations as an initial-value problem; causality theory and hyperbolicity; singularities and trapped domains; Penrose diagrams; asymptotically flat spaces: ADM invariants, positive mass theorems, Penrose inequalities, geometric properties.
Lecture notesLecture notes written by the instructor will be provided to all enrolled students.
Prerequisites / NoticeThe content of the basic courses of the first three years at ETH will be assumed. In particular, enrolled students are expected to be fluent both in Differential Geometry (at least at the level of Differentialgeometrie I, II) and Functional Analysis (at least at the level of Funktionalanalysis I, II). Some background on partial differential equations, mainly of elliptic and hyperbolic type, (say at the level of the monograph by L. C. Evans) would also be desirable.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersA. Carlotto
Typesession examination
Language of examinationEnglish
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationoral 30 minutes
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Courses

NumberTitleHoursLecturers
401-4831-66 VMathematical Themes in General Relativity I2 hrs
Mon16-18HG E 3 »
A. Carlotto

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Doctoral Department of MathematicsGraduate SchoolWInformation
Mathematics MasterSelection: AnalysisWInformation