151-3206-00L  Systemic Design for Sustainability

SemesterSpring Semester 2017
LecturersT. Luthe
Periodicityyearly recurring course
Language of instructionEnglish



Catalogue data

AbstractThis course introduces students to systemic design for sustainability to enable designers and engineers to take more effective action toward improving the complex sustainability challenges of today. Fundamental topics in systemic design cover the main theory, methods, and frameworks. Students will design and engineer their own outdoor sports product (e.g. a Surf-/Kite-/Skateboard).
ObjectiveThe growing necessity to consider eco-social aspects makes engineering design more complex. Systemic design combines systems thinking skills with design thinking to address such complexity. The objectives of the course are to introduce students to the most important topics in systemic design methods, models, theory and methodology that form the basis for engineering design practice and research for sustainability. A main goal is to develop whole systems thinking, life cycle and cradle to cradle thinking, to build knowledge on environmental impacts of materials and processes, and to stimulate overall reflective eco-social thinking in engineering design. Theory is applied by designing and engineering an individual outdoor sports product pushing the limits of systemic design for sustainability.
ContentThe course is organized in four units with a theoretical and a practical part : Unit 1) Create a self-reflective, in-depth understanding of sustainability in general and in specific relation with engineering design, Unit 2) Develop whole systems thinking and learn systemic design tools such as life cycle design, cradle to cradle design, upcycling, biomimicry, Unit 3) Understand the human behavioral factors within systemic design and sustainability impact assessment. Unit 4) Apply theory to practice and build your own Surf-/Kite-/Longboard according to the systemic design skills acquired during this course. Students will finish a sustainability impact study for ecological, social, technical and economic peformance indicators of the products they design and build.
Lecture notesavailable on Moodle
Literaturee.g. Striebig, B. and Ogundipe, A. 2016. Engineering Applications in Sustainable Design and Development. ISBN-10: 8131529053.
Jones, P. 2014. Design research methods for systemic design: Perspectives from design education and practice. Proceedings of ISSS 2014, July 28 - Aug1, 2014, Washington, D.C.
Blizzard, J. L. and L. E. Klotz. 2012. A framework for sustainable whole systems design. Design Studies 33(5).
Brown, T. and J. Wyatt. 2010. Design thinking for social innovation. Stanford Social Innovation Review. Stanford University.
Fischer, M. 2015. Design it! Solving Sustainability problems by applying design thinking. GAIA 24/3:174-178.
Luthe, T., Kaegi, T. and J. Reger. 2013. A Systems Approach to Sustainable Technical Product Design. Combining life cycle assessment and virtual development in the case of skis. Journal of Industrial Ecology 17(4), 605-617. DOI: 10.1111/jiec.12000
Prerequisites / NoticePrior to the course start the literature has to be read as a preparation. Willingness to engage in the practical building part also beyond the course hours in the evening. Finishing an impact evaluation study within and outside of the contact lessons.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersT. Luthe
Typegraded semester performance
Language of examinationEnglish
RepetitionRepetition only possible after re-enrolling for the course unit.
Additional information on mode of examinationGraded Semester Performance plus Individual Evaluation Reports.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Courses

NumberTitleHoursLecturers
151-3206-00 GSystemic Design for Sustainability3 hrs
Wed10-13HG G 26.3 »
T. Luthe

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Integrated Building Systems MasterSpecialised CoursesWInformation
Mechanical Engineering BachelorDesign, Mechanics and MaterialsWInformation
Mechanical Engineering MasterDesign, Computation, Product Development & ManufacturingWInformation