Das Frühjahrssemester 2021 findet grundsätzlich online statt. Neue Präsenzelemente ab 26. April werden von den Dozierenden mitgeteilt.

636-0007-00L  Computational Systems Biology

SemesterHerbstsemester 2017
DozierendeJ. Stelling
Periodizitätjährlich wiederkehrende Veranstaltung


KurzbeschreibungStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
LernzielThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
InhaltBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
LiteraturU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2006.


Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeJ. Stelling
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 120 Minuten
Hilfsmittel schriftlichkeine
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.


HauptlinkLecture Material
Es werden nur die öffentlichen Lernmaterialien aufgeführt.


636-0007-00 VComputational Systems Biology3 Std.
Mi14-17HG D 3.2 »
J. Stelling
636-0007-00 UComputational Systems Biology2 Std.
Fr10-12CAB G 11 »
J. Stelling


Keine Informationen zu Gruppen vorhanden.


Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

Biologie MasterWahlpflicht Masterkurse I: RechnergestützWInformation
Biologie MasterWahlpflicht MasterkurseWInformation
CAS in InformatikFokusfächer und WahlfächerWInformation
Chemie- und Bioingenieurwissenschaften MasterWahlfächerWInformation
Computational Biology and Bioinformatics MasterKernfächerWInformation
Computational Biology and Bioinformatics MasterBiosystemsWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Informatik MasterKernfächer der Vertiefung in Computational ScienceWInformation
Informatik MasterKernfächer der Vertiefung General StudiesWInformation
Rechnergestützte Wissenschaften BachelorBiologieWInformation
Rechnergestützte Wissenschaften MasterBiologieWInformation
Robotics, Systems and Control MasterKernfächerWInformation