From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

401-0131-00L  Linear Algebra

SemesterAutumn Semester 2017
LecturersÖ. Imamoglu, O. Sorkine Hornung
Periodicityyearly recurring course
Language of instructionGerman

Catalogue data

AbstractIntroduction to linear algebra (vector spaces, linear transformations, matrices) , matrix decompositions (LU, QR, eigenvalue, and singular value decomposition).
ObjectiveDie Lernziele sind:
- die fundamentalen Konzepte der linearen Algebra gut zu verstehen
- Anwendungen der linearen Algebra in der Informatik kennenzulernen
ContentLinear Algebra:
Linear systems of equations, vectors and matrices, norms and scalar products, LU decomposition, vector spaces and linear transformations, least squares problems, QR decomposition, determinants, eigenvalues and eigenvectors, singular value decomposition, applications.
Lecture notesLecture notes "Linear Algebra" (Gutknecht) in German, with English expressions for all technical terms.
Prerequisites / NoticeThe relevant high school material is reviewed briefly at the beginning.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
In examination block forBachelor's Programme in Computer Science 2008; Version 24.02.2016 (Examination Block)
Bachelor's Programme in Computer Science 2016; Version 25.02.2020 (First Year Examination Block 1)
ECTS credits7 credits
ExaminersO. Sorkine Hornung, Ö. Imamoglu
Typesession examination
Language of examinationGerman
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationwritten 120 minutes
Written aids12 A4-Seiten handgeschriebene Notizen; kein Taschenrechner.
If the course unit is part of an examination block, the credits are allocated for the successful completion of the whole block.
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

LiteratureSkript "Lineare Algebra", by Martin H. Gutknecht
Only public learning materials are listed.


401-0131-00 VLineare Algebra
Vorlesung im HG E 7 bzw. ML D 28 mit Videoübertragung im HG E 5 bzw. ML E 12
4 hrs
Wed10-12HG E 5 »
10-12HG E 7 »
Fri10-12ML D 28 »
10-12ML E 12 »
Ö. Imamoglu, O. Sorkine Hornung
401-0131-00 ULineare Algebra
Do 8-10, Do 14-16 oder Fr 13-15 gemäss Gruppeneinteilung
2 hrs
Thu08-10IFW B 42 »
08-10IFW C 31 »
08-10IFW C 33 »
08-10ML F 34 »
14-16CAB G 57 »
14-16ETZ K 91 »
14-16HG F 26.3 »
14-16LEE C 114 »
14-16ML F 39 »
14-16ML F 40 »
14-16ML J 34.1 »
Fri13-15ETZ J 91 »
13-15IFW B 42 »
13-15IFW C 35 »
13-15IFW D 42 »
13-15LFW C 11 »
13-15ML H 34.3 »
Ö. Imamoglu, O. Sorkine Hornung


No information on groups available.


There are no additional restrictions for the registration.

Offered in

Computer Science BachelorFirst Year Examination Block 1OInformation