701-1233-00L  Stratospheric Chemistry

SemesterAutumn Semester 2017
LecturersT. Peter, A. Stenke
Periodicityyearly recurring course
Language of instructionEnglish


AbstractThermodynamical and kinetic basics: bi- and termolecular reactions, photo-dissociation. Chemical family concept. Chapman chemistry. Radical reactions of oxygen species with nitric oxide, active halogens and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere. Heterogeneous chemistry on background aerosol. Chemistry and dynamics of the ozone hole.
ObjectiveThe lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects. Especially the intercontinental air traffic and the ozone depletion caused by FCKW CFC in the mid-latitude and the polar regions as well as coupling with the greenhouse effect.
ContentShort presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chloride activation.
Lecture notesDocuments are provided in the contact hours.
Literature- Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005).
- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- WMO, Scientific Assessment of Ozone Depletion: 2014, Report No. 55, Geneva, 2015.
Prerequisites / NoticePrerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected.

701-1233-00 V starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester.