Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

227-0447-00L  Image Analysis and Computer Vision

SemesterHerbstsemester 2018
DozierendeL. Van Gool, O. Göksel, E. Konukoglu
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Katalogdaten

KurzbeschreibungLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
LernzielOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
InhaltThis course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
SkriptCourse material Script, computer demonstrations, exercises and problem solutions
Voraussetzungen / BesonderesPrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeE. Konukoglu, O. Göksel, L. Van Gool
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 15 Minuten
Zusatzinformation zum PrüfungsmodusThe IACV examinations are structured as follows. You will have the opportunity to come to the preparation room - usually room ETFC 109 - an hour before your scheduled exam time. During that period, you will be given the exam questions to prepare but you will not be allowed to use any aid other than pen and paper. Then, you will be sent to the exam room - usually room ETFC 117 - for your oral test comprising 2 sessions, each lasting 15 minutes.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkInformation
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Lehrveranstaltungen

NummerTitelUmfangDozierende
227-0447-00 VImage Analysis and Computer Vision3 Std.
Do13-16ETF C 1 »
L. Van Gool, O. Göksel, E. Konukoglu
227-0447-00 UImage Analysis and Computer Vision1 Std.
Do16-17ETF C 1 »
L. Van Gool, O. Göksel, E. Konukoglu

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Biomedical Engineering MasterKernfächer der VertiefungWInformation
Biomedical Engineering MasterKernfächer der VertiefungWInformation
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Biomedical Engineering MasterWeitere WahlfächerWInformation
Elektrotechnik und Informationstechnologie MasterKernfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterAdvanced Core CoursesWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Gesundheitswissenschaften und Technologie MasterWahlfächer IIWInformation
Gesundheitswissenschaften und Technologie MasterWahlfächer IIWInformation
Gesundheitswissenschaften und Technologie MasterWahlfächer IIWInformation
MAS in MedizinphysikKernfächerWInformation
Maschineningenieurwissenschaften MasterMechanics, Materials, StructuresWInformation
Maschineningenieurwissenschaften MasterRobotics, Systems and ControlWInformation
Maschineningenieurwissenschaften MasterBioengineeringWInformation
Mathematik MasterImage Processing and Computer VisionWInformation
Rechnergestützte Wissenschaften BachelorWahlfächerWInformation
Rechnergestützte Wissenschaften MasterWahlfächerWInformation
Robotics, Systems and Control MasterKernfächerWInformation