Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

263-0008-00L  Computational Intelligence Lab

SemesterFrühjahrssemester 2019
DozierendeT. Hofmann
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarOnly for master students, otherwise a special permission by the study administration of D-INFK is required.



Katalogdaten

KurzbeschreibungThis laboratory course teaches fundamental concepts in computational science and machine learning with a special emphasis on matrix factorization and representation learning. The class covers techniques like dimension reduction, data clustering, sparse coding, and deep learning as well as a wide spectrum of related use cases and applications.
LernzielStudents acquire fundamental theoretical concepts and methodologies from machine learning and how to apply these techniques to build intelligent systems that solve real-world problems. They learn to successfully develop solutions to application problems by following the key steps of modeling, algorithm design, implementation and experimental validation.

This lab course has a strong focus on practical assignments. Students work in groups of three to four people, to develop solutions to three application problems: 1. Collaborative filtering and recommender systems, 2. Text sentiment classification, and 3. Road segmentation in aerial imagery.

For each of these problems, students submit their solutions to an online evaluation and ranking system, and get feedback in terms of numerical accuracy and computational speed. In the final part of the course, students combine and extend one of their previous promising solutions, and write up their findings in an extended abstract in the style of a conference paper.

(Disclaimer: The offered projects may be subject to change from year to year.)
Inhaltsee course description

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte8 KP
PrüfendeT. Hofmann
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusschriftlich 120 Minuten
Zusatzinformation zum Prüfungsmodus70% session examination, 30% project; the final grade will be calculated as weighted average of both these elements. As a compulsory continuous performance assessment task, the project must be passed on its own and has a bonus/penalty function.

The practical project is an integral part of the course. Participation is mandatory.
Failing the project results in a failing grade for the overall examination of Computational Intelligence Lab.
Hilfsmittel schriftlichTwo A4-pages (i.e. one A4-sheet of paper), either handwritten or 11 point minimum font size.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Lehrveranstaltungen

NummerTitelUmfangDozierende
263-0008-00 VComputational Intelligence Lab2 Std.
Fr08-10HG E 7 »
T. Hofmann
263-0008-00 UComputational Intelligence Lab2 Std.
Do15-17CAB G 51 »
16-18CHN C 14 »
Fr15-17CAB G 61 »
18.04.16-17CHN C 14 »
T. Hofmann
263-0008-00 AComputational Intelligence Lab
No presence required.
3 Std.T. Hofmann

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Data Science MasterWählbare KernfächerWInformation
Informatik MasterVertiefungsübergreifende FächerOInformation
Rechnergestützte Wissenschaften MasterWahlfächerWInformation