Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

263-2300-00L  How To Write Fast Numerical Code

SemesterFrühjahrssemester 2019
DozierendeM. Püschel
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarNumber of participants limited to 84.

Prerequisite: Master student, solid C programming skills.

Takes place the last time in this form.



Katalogdaten

KurzbeschreibungThis course introduces the student to the foundations and state-of-the-art techniques in developing high performance software for mathematical functionality such as matrix operations, transforms, and others. The focus is on optimizing for a single core. This includes optimizing for the memory hierarchy, for special instruction sets, and the possible use of automatic performance tuning.
LernzielSoftware performance (i.e., runtime) arises through the complex interaction of algorithm, its implementation, the compiler used, and the microarchitecture the program is run on. The first goal of the course is to provide the student with an understanding of this "vertical" interaction, and hence software performance, for mathematical functionality. The second goal is to teach a systematic strategy how to use this knowledge to write fast software for numerical problems. This strategy will be trained in several homeworks and a semester-long group project.
InhaltThe fast evolution and increasing complexity of computing platforms pose a major challenge for developers of high performance software for engineering, science, and consumer applications: it becomes increasingly harder to harness the available computing power. Straightforward implementations may lose as much as one or two orders of magnitude in performance. On the other hand, creating optimal implementations requires the developer to have an understanding of algorithms, capabilities and limitations of compilers, and the target platform's architecture and microarchitecture.

This interdisciplinary course introduces the student to the foundations and state-of-the-art techniques in high performance mathematical software development using important functionality such as matrix operations, transforms, filters, and others as examples. The course will explain how to optimize for the memory hierarchy, take advantage of special instruction sets, and other details of current processors that require optimization. The concept of automatic performance tuning is introduced. The focus is on optimization for a single core; thus, the course complements others on parallel and distributed computing.

Finally a general strategy for performance analysis and optimization is introduced that the students will apply in group projects that accompany the course.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeM. Püschel
Formbenotete Semesterleistung
PrüfungsspracheEnglisch
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum PrüfungsmodusThe grade for the course is determined by several homeworks (35%), one midterm exam (25%), and one semester long project with final report and presentation (40%).

Last cancellation/deregistration date for this graded semester performance: 17 March, i.e., about 4 weeks into the course! Please note that after that date no deregistration will be accepted and a "no show" will appear on your transcript.

Lernmaterialien

 
HauptlinkCourse information
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Lehrveranstaltungen

NummerTitelUmfangDozierende
263-2300-00 VHow To Write Fast Numerical Code3 Std.
Mo10-12HG D 3.2 »
Do09-10CAB G 51 »
M. Püschel
263-2300-00 UHow To Write Fast Numerical Code2 Std.
Mi13-15HG D 3.2 »
M. Püschel

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

PlätzeMaximal 84
WartelisteBis 01.03.2019

Angeboten in

StudiengangBereichTyp
CAS in InformatikFokusfächer und WahlfächerWInformation
Computational Biology and Bioinformatics MasterTheorieWInformation
DAS in Data ScienceBig Data SystemsWInformation
Data Science MasterWählbare KernfächerWInformation
Informatik DZFachwissenschaftliche Vertiefung mit pädagogischem FokusWInformation
Informatik LehrdiplomFachwiss. Vertiefung mit pädagogischem Fokus und weitere FachdidaktikWInformation
Informatik MasterKernfächer der Vertiefung in Computational ScienceWInformation
Informatik MasterKernfächer der Vertiefung General StudiesWInformation
Informatik MasterWahlfächer der Vertiefung in Software EngineeringWInformation
Rechnergestützte Wissenschaften DZWeitere FachdidaktikWInformation
Rechnergestützte Wissenschaften MasterKernfächerWInformation