551-1298-00L  Genetics, Genomics, Bioinformatics

SemesterSpring Semester 2019
LecturersE. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz
Periodicityyearly recurring course
Language of instructionGerman



Courses

NumberTitleHoursLecturers
551-1298-00 VGenetik, Genomik, Bioinformatik2 hrs
Tue13:15-15:00HG D 1.2 »
E. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz
551-1298-00 UGenetik, Genomik, Bioinformatik2 hrs
Mon07:45-09:30HCI G 7 »
E. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz

Catalogue data

AbstractThe course provides the basis of modern genetics, genomics and bioinformatics. A special focus is placed on the use of these tools for the understanding of biological processes in bacteria, model organisms and humans. The unit uses the principle of blended learning consisting of self-study modules in Moodle, tasks and input lectures by experts from the department.
ObjectiveAt the end of this course you know the most important genetic tools in different organisms. You can use the essential methods in bioinformatics by using online tools. You know the advantages and disadvantages of various model organisms to understand biological processes. You know the various mutagenesis methods and other tools to disrupt gene function and can discuss their merits and drawbacks. You are aware of the difficulties in choosing a phenotype for selection in a mutagenesis experiment. Finally, you can describe how you would study a specific biological process by choosing a model organism and the appropriate genetic or genomic tools.
ContentThe appearance and function of an organism (phenotype) is determined by the interplay between its genome (genotype) and the environment: Genotype + environment = phenotype. Understanding these interactions to the point where we can ultimately predict the phenotype from knowledge of the genotype and environmental factors is one oft the great challenges of biology.

In the course Bio IA you learnt about the composition and function of the genome and how it is inherited. The goal of this course is that you learn how genetic, genomic and bioinformatics methods are used to understand biological processes (the connection between genotype and phenotype).

In the first two weeks you will renew and deepen your knowledge of the basic principles of genetics and genomics in interactive learning modules on the Moodle platform. This is followed by an introduction of the basic tools of bioinformatics. You learn to search for specific genome sequences, to align them and to construct pedigrees of related genes.

After you have mastered the basic principles you will learn how to study biological processes either by inactivating specific genes or by randomly mutagenizing the entire genome. You will be introduced to different model organisms (bacteria, yeast, Drosophila, mouse) and humans.

Conventional genetic methods rely on the alteration of the function of single genes and on the observation of the effect on the organism (phenotype). Based on the observed phenotype one deduces the normal function of the gene. This is a strong simplification since, even if environmental factors are controlled, phenotypes are very rarely controlled by a single gene. It is therefore important to understand the influence of the entire genome in conjunction with environmental factors on a given phenotype (e.g. a human disease). Modern methods in genomics now permit first approaches in this direction. Therefore, the focus of the second part of the unit is on genome-wide association studies. You learn, how the influence of the entire genome on a specific phenotype is detected and what challenges are involved in the analysis and the interpretation of the results. We will examine these methods in model organisms and humans. You will also learn how the genome of cancer cells changes under the constant selection for these cells to survive and how this genome analysis provides new insights into diagnosis and therapy.

This course is based on active learning. Each week consists of a learning unit with clearly defined learning goals. In the first two hours you will learn the basics from texts, videos and questionnaires on the Moodle platform. In the third lecture an expert on the topic of the week (e.g. genetic screens in yeast) from the department will give an input lecture that builds on the basic knowledge that you acquired. In the fourth lecture you will discuss the tests and topics of the week with the expert. During the semester you will have access to assistants and lecturers via the Moodle online forum.

At the beginning of the learning unit you will take a short multiple-choice test on the content of the course. This formative assessment does not count for your final grade but gives you and us a way to determine where you stand also in relation to your fellow students. A similar formative assessment test will be given at the end of the semester. In this way, we can determine the learning gain during the course and obtain a quantitative feedback on the course. The exam is based on the learning goals of the individual chapters and the questions in the formative assessments.
Lecture notesThe learning material and slides of the input lectures are available on Moodle. There you will also find further information (articles, links, videos).
LiteratureAll texts and references will be available on Moodle. To follow the most recent developments in this rapidly evolving field follow the following experts on Twitter:
@dgmacarthur
@EricTopol
und/oder @ehafen
Prerequisites / NoticeThe course builds on the course Bio IA, in particular on that course's content regarding genetics and genomics. The course is based on self-learning units on Moodle, input lectures by experts from D-BIOL and exercises.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersE. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz
Typesession examination
Language of examinationGerman
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationwritten 150 minutes
Additional information on mode of examinationDie Vorlesung wird durch Übungen auf einer Lernplattform (Moodle) begleitet. Bei erfolgreicher Teilnahme an den Übungen (mindestens 70% der Aktivitäten müssen erfolgreich abgeschlossen sein) können die Studierenden einen Bonus von bis zu 0.25 Notenpunkten erhalten, der auf die Schlussnote der Prüfung angerechnet werden kann. Die Maximalnote 6 für die Lerneinheit kann auch erreicht werden, wenn nur die Sessionsprüfung absolviert wird.
Bei einer allfälligen Prüfungsrepetition wird standardmässig die während des Kurses erbrachte Leistung übernommen. Wird dies nicht gewünscht muss der Kurs erneut belegt werden.

Die Sessionsprüfung kann elektronisch erfolgen.
Written aidsWörterbuch
Online examinationThe examination may take place on the computer.
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

 
Main linkMoodle-Kurs / Moodle course
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Biology BachelorCore CoursesOInformation