Das Frühjahrssemester 2021 findet sicher bis Ostern online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die Informationen der Dozierenden.

263-3826-00L  Data Stream Processing and Analytics

SemesterFrühjahrssemester 2019
DozierendeV. Kalavri
Periodizitäteinmalige Veranstaltung


KurzbeschreibungThe course covers fundamentals of large-scale data stream processing. The focus is on the design and architecture of modern distributed streaming systems as well as algorithms for analyzing data streams.
LernzielThis course has the goal of providing an overview of the data stream processing model and introducing modern platforms and tools for anlayzing massive data streams. By the end of the course, students should be able to use techniques for extracting knowledge from continuous, fast data streams. They will also have gained a deep understanding of the design and implementation of modern distributed stream processors through a series of hands-on exercises.
InhaltModern data-driven applications require continuous, low-latency processing of large-scale, rapid data events such as videos, images, emails, chats, clicks, search queries, financial transactions, traffic records, sensor measurements, etc. Extracting knowledge from these data streams is particularly challenging due to their high speed and massive volume.
Distributed stream processing has recently become highly popular across industry and academia due to its capabilities to both improve established data processing tasks and to facilitate novel applications with real-time requirements. In this course, we will study the design and architecture of modern distributed streaming systems as well as fundamental algorithms for analyzing data streams.
SkriptSchedule and lecture notes will be posted in the course website: https://www.systems.ethz.ch/courses/spring2019/dspa/
Voraussetzungen / BesonderesThe exercise sessions will be a mixture of (1) reviews, discussions, and evaluation of research papers on data stream processing, and (2) programming assignments on implementing data stream mining algorithms and anlysis tasks.

- Basic knowledge of relational data management and distributed systems.

- Basic programming skills in Java and/or Rust is necessary to carry out the practical exercises and final project.


Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeV. Kalavri
Formbenotete Semesterleistung
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum PrüfungsmodusThe course consists of lectures, exercises, and a final semester project. There will be no formal examination at the end of the course. Students are continuously graded based on their participation in class (10%), weekly assignments (50%), and semester project (40%).


Lehr-DokumentenablageLehr-Dokumentenablage / Teaching document repository
Es werden nur die öffentlichen Lernmaterialien aufgeführt.


263-3826-00 VData Stream Processing and Analytics2 Std.
Mo10-12CHN E 42 »
V. Kalavri
263-3826-00 UData Stream Processing and Analytics2 Std.
Mo13-15CHN F 46 »
18.02.13-15CHN D 46 »
V. Kalavri
263-3826-00 AData Stream Processing and Analytics1 Std.V. Kalavri


Keine Informationen zu Gruppen vorhanden.


Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

CAS in InformatikFokusfächer und WahlfächerWInformation
Data Science MasterWählbare KernfächerWInformation
Informatik MasterWahlfächer der Vertiefung General StudiesWInformation
Informatik MasterWahlfächer der Vertiefung in Distributed SystemsWInformation