Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

262-0200-00L  Bayesian Phylodynamics

SemesterFrühjahrssemester 2019
DozierendeT. Stadler, T. Vaughan
Periodizitätjährlich wiederkehrende Veranstaltung


KurzbeschreibungHow fast was Ebola spreading in West Africa? Where and when did the epidemic outbreak start? How can we construct the phylogenetic tree of great apes, and did gene flow occur between different apes? Students will be able to perform their own phylodynamic analysis of genetic sequencing and independent data analysis to characterize future epidemic outbreaks or reconstruct parts of the tree of life.
LernzielAttendees will extend their knowledge of Bayesian phylodynamics obtained in the “Computational Biology” class (636-0017-00L) and will learn how to apply this theory to real world data. The main theoretical concepts introduced are:
* Bayesian statistics
* Phylogenetic and phylodynamic models
* Markov Chain Monte Carlo methods
Attendees will apply these concepts to a number of applications yielding biological insight into:
* Epidemiology
* Pathogen evolution
* Macroevolution of species
InhaltIn the first part of the semester, in each week, we will first present the theoretical concepts of Bayesian phylodynamics. The presentation will be followed by attendees using the software package BEAST v2 to apply these theoretical concepts to empirical data. We use previously published datasets on e.g. Ebola, Zika, Yellow Fever, Apes, and Penguins for analysis. Examples of these practical tutorials are available on https://taming-the-beast.org/.
In the second part of the semester, the students choose an empirical dataset of genetic sequencing data and possibly some non-genetic metadata. They then design and conduct a research project in which they perform Bayesian phylogenetic analyses of their dataset. The weekly class is intended to discuss and monitor progress and to address students’ questions very interactively. At the end of the semester, the students present their research project in an oral presentation. The content of the presentation, the style of the presentation, and the performance in answering the questions after the presentation will be marked.
SkriptLecture slides will be available on moodle.
LiteraturThe following books provide excellent background material:
• Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.
• Yang, Z. 2014. Molecular Evolution: A Statistical Approach.
• Felsenstein, J. 2003. Inferring Phylogenies.
The tutorials in this course are based on our Summer School “Taming the BEAST”: https://taming-the-beast.org/
Voraussetzungen / BesonderesThis class builds upon the content which we taught in the Computational Biology class (636-0017-00L). Attendees must have either taken the Computational Biology class or acquired the content elsewhere.


Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeT. Stadler, T. Vaughan
Formbenotete Semesterleistung
RepetitionRepetition nur nach erneuter Belegung der Lerneinheit möglich.
Zusatzinformation zum PrüfungsmodusGraded oral presentation of research project which was conducted throughout the semester (20 min of presentation of research project, plus 10 min of questions on presentation and research project).


Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.


262-0200-00 GBayesian Phylodynamics2 Std.
Mi11-13BSA E 60 »
T. Stadler, T. Vaughan
262-0200-00 ABayesian Phylodynamics2 Std.T. Stadler, T. Vaughan


Keine Informationen zu Gruppen vorhanden.


Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

Biotechnologie MasterWahlfächerWInformation
Computational Biology and Bioinformatics MasterTheorieWInformation
Data Science MasterInterdisziplinäre WahlfächerWInformation
Mathematik MasterBiologyWInformation
Rechnergestützte Wissenschaften BachelorWeitere Wahlfächer aus den Vertiefungsgebieten (RW Master)WInformation
Rechnergestützte Wissenschaften MasterBiologieWInformation