402-0595-00L  Semiconductor Nanostructures

SemesterAutumn Semester 2020
LecturersT. M. Ihn
Periodicityyearly recurring course
Language of instructionEnglish


402-0595-00 VSemiconductor Nanostructures2 hrs
Wed11:45-13:30HCI J 4 »
T. M. Ihn
402-0595-00 USemiconductor Nanostructures
or by appointment
1 hrs
Wed13:45-14:30HIL C 10.2 »
13:45-14:30HIL F 10.3 »
T. M. Ihn

Catalogue data

AbstractThe course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.
ObjectiveAt the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:
1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots
Content1. Introduction and overview
2. Semiconductor crystals: Fabrication and band structures
3. k.p-theory, effective mass
4. Envelope functions and effective mass approximation, heterostructures and band engineering
5. Fabrication of semiconductor nanostructures
6. Elektrostatics and quantum mechanics of semiconductor nanostructures
7. Heterostructures and two-dimensional electron gases
8. Drude Transport
9. Electron transport in quantum point contacts; Landauer-Büttiker description
10. Ballistic transport experiments
11. Interference effects in Aharonov-Bohm rings
12. Electron in a magnetic field, Shubnikov-de Haas effect
13. Integer quantum Hall effect
14. Coulomb blockade and quantum dots
Lecture notesT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteratureIn addition to the lecture notes, the following supplementary books can be recommended:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Prerequisites / NoticeThe lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisit. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits6 credits
ExaminersT. M. Ihn
Typesession examination
Language of examinationEnglish
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationoral 20 minutes
Additional information on mode of examinationObligatorisches Leistungselement: ein Vortrag über eine Publikation aus der Forschung, Termin nach Absprache während der Übung, Bewertung gemäss pass/fail.

Es wird sehr empfohlen, die wöchentlichen Übungsaufgaben zu lösen.

Prüfungssprache: Deutsch oder Englisch.
Language of examination: English or German.
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

No public learning materials available.
Only public learning materials are listed.


No information on groups available.


There are no additional restrictions for the registration.

Offered in

Doctoral Department of PhysicsDoctoral and Post-Doctoral CoursesWInformation
Interdisciplinary Sciences BachelorElectivesWInformation
Micro- and Nanosystems MasterEnergy Conversion and Quantum PhenomenaW+Information
Physics MasterSelection: Solid State PhysicsWInformation
Quantum Engineering MasterElectivesWInformation