227-0560-00L  Deep Learning for Autonomous Driving

SemesterFrühjahrssemester 2021
DozierendeD. Dai, A. Liniger
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch
KommentarRegistration in this class requires the permission of the instructors.
Class size will be limited to 80 students.
Please send an email to Dengxin Dai <dai@vision.ee.ethz.ch> about your courses/projects that are related to machine learning, computer vision, and Robotics.



Lehrveranstaltungen

NummerTitelUmfangDozierende
227-0560-00 VDeep Learning for Autonomous Driving Für Fachstudierende und Hörer/-innen ist eine Spezialbewilligung der Dozierenden notwendig.
Bewilligung der Dozierenden für alle Studierenden notwendig.
3 Std.
Fr13-16LFO C 13 »
D. Dai, A. Liniger
227-0560-00 PDeep Learning for Autonomous Driving Für Fachstudierende und Hörer/-innen ist eine Spezialbewilligung der Dozierenden notwendig.
Bewilligung der Dozierenden für alle Studierenden notwendig.
2 Std.
Fr10-12ETZ D 61.1 »
10-12ETZ D 61.2 »
D. Dai, A. Liniger

Katalogdaten

KurzbeschreibungAutonomous driving has moved from the realm of science fiction to a very real possibility during the past twenty years, largely due to rapid developments of deep learning approaches, automotive sensors, and microprocessor capacity. This course covers the core techniques required for building a self-driving car, especially the practical use of deep learning through this theme.
LernzielStudents will learn about the fundamental aspects of a self-driving car. They will also learn to use modern automotive sensors and HD navigational maps, and to implement, train and debug their own deep neural networks in order to gain a deep understanding of cutting-edge research in autonomous driving tasks, including perception, localization and control.

After attending this course, students will:
1) understand the core technologies of building a self-driving car;
2) have a good overview over the current state of the art in self-driving cars;
3) be able to critically analyze and evaluate current research in this area;
4) be able to implement basic systems for multiple autonomous driving tasks.
InhaltWe will focus on teaching the following topics centered on autonomous driving: deep learning, automotive sensors, multimodal driving datasets, road scene perception, ego-vehicle localization, path planning, and control.

The course covers the following main areas:

I) Foundation
a) Fundamentals of a self-driving car
b) Fundamentals of deep-learning


II) Perception
a) Semantic segmentation and lane detection
b) Depth estimation with images and sparse LiDAR data
c) 3D object detection with images and LiDAR data
d) Object tracking and Lane Detection

III) Localization
a) GPS-based and Vision-based Localization
b) Visual Odometry and Lidar Odometry

IV) Path Planning and Control
a) Path planning for autonomous driving
b) Motion planning and vehicle control
c) Imitation learning and reinforcement learning for self driving cars

The exercise projects will involve training complex neural networks and applying them on real-world, multimodal driving datasets. In particular, students should be able to develop systems that deal with the following problems:
- Sensor calibration and synchronization to obtain multimodal driving data;
- Semantic segmentation and depth estimation with deep neural networks ;
- 3D object detection and tracking in LiDAR point clouds
SkriptThe lecture slides will be provided as a PDF.
Voraussetzungen / BesonderesThis is an advanced grad-level course. Students must have taken courses on machine learning and computer vision or have acquired equivalent knowledge. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. All practical exercises will require basic knowledge of Python and will use libraries such as PyTorch, scikit-learn and scikit-image.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte6 KP
PrüfendeD. Dai, A. Liniger
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird in jeder Session angeboten. Die Repetition ist ohne erneute Belegung der Lerneinheit möglich.
Prüfungsmodusmündlich 30 Minuten
Zusatzinformation zum PrüfungsmodusThe grade is based on (1) the realization of three projects (10%, 20% and 20%), and (2) an oral session exam (50%).
Successfully completing the projects is compulsory for attending the exam.
The projects will be group based.
The examination is based on the contents of the lectures, the associated reading materials and exercises.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkCourse Website
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Allgemein : Für Fachstudierende und Hörer/-innen ist eine Spezialbewilligung der Dozierenden notwendig
Bewilligung der Dozierenden für alle Studierenden notwendig

Angeboten in

StudiengangBereichTyp
Cyber Security MasterWahlfächerWInformation
Data Science MasterWählbare KernfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Informatik MasterWahlfächer der Vertiefung in Visual ComputingWInformation
Informatik MasterWahlfächer der Vertiefung General StudiesWInformation
Informatik MasterWahlfächerWInformation
Informatik MasterErgänzung in Computer VisionWInformation
Robotics, Systems and Control MasterKernfächerWInformation