227-0085-09L  Projects & Seminars: Spiking Neural Network on Neuromorphic Processors

SemesterSpring Semester 2021
LecturersG. Indiveri
Periodicityevery semester recurring course
CourseDoes not take place this semester.
Language of instructionEnglish
CommentOnly for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.



Courses

NumberTitleHoursLecturers
227-0085-09 PProjekte & Seminare: Spiking Neural Network on Neuromorphic Processors Special students and auditors need a special permission from the lecturers.
Does not take place this semester.
Für den Zugang zum Angebot und zur Einschreibung loggen Sie sich hier ein (mit Ihrem n.ETHZ account): https://psapp.ee.ethz.ch/
Bitte beachten Sie, dass die Seite jeweils erst zwei Wochen vor Semesterbeginn zugänglich ist und im Verlauf des Semesters wieder abgeschaltet wird. Die Einschreibung ist nur von Freitag vor Semesterbeginn bis zum ersten Freitagmittag im Semester möglich.

To access the offer and to enroll for courses log in (with your n.ethz account): https://psapp.ee.ethz.ch/
Please note that the P&S-site is accessible no earlier than two weeks before the start of the semester until four weeks after the start of the semester. Enrollment is only possible from Friday before the start of the semester until noon of the first Friday in the semester.
3 hrsG. Indiveri

Catalogue data

AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMachine Learning – Spiking Neural Network – DVS Cameras - Programming Neuromoripch processors – Intel Loihi - Final Project with a presentation.

Compared to the “traditional” artificial neural network, the spiking neural network (SNN) can provided both latency and energy efficiency. Moreover, SNN has demonstrated in previous works a better performance in processing physiological information of small sample size, and only the output layer of the spiking neural network needs to be trained, which results in a fast training rate. This couse focuses on giving the bases of spiking neural networks and neuromorphic processors. Students will learn the tools to implement SNN algorithm in both academic processors and Intel Loihi using data from Event-based Vision camera and biomedical sensors (i.e. ECG and EEG). The course will end with 4 weeks project
where the students can target a specif application scenario.

The course will be taught in English.

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits3 credits
ExaminersG. Indiveri
Typeungraded semester performance
Language of examinationEnglish
RepetitionRepetition only possible after re-enrolling for the course unit.

Learning materials

No public learning materials available.
Only public learning materials are listed.

Groups

No information on groups available.

Restrictions

General : Special students and auditors need a special permission from the lecturers
PlacesLimited number of places. Special selection procedure.
Beginning of registration periodRegistration possible from 19.02.2021
PriorityRegistration for the course unit is only possible for the primary target group
Primary target groupElectrical Engin. + Information Technology BSc (228000)
Waiting listuntil 12.03.2021
End of registration periodRegistration only possible until 05.03.2021

Offered in

ProgrammeSectionType
Electrical Engineering and Information Technology BachelorProjects & SeminarsWInformation