402-0448-01L  Quantum Information Processing I: Concepts

SemesterSpring Semester 2021
LecturersP. Kammerlander
Periodicityyearly recurring course
Language of instructionEnglish
CommentThis theory part QIP I together with the experimental part 402-0448-02L QIP II (both offered in the Spring Semester) combine to the core course in experimental physics "Quantum Information Processing" (totally 10 ECTS credits). This applies to the Master's degree programme in Physics.


AbstractThe course will cover the key concepts and ideas of quantum information processing, including descriptions of quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer.
Key concepts such as quantum error correction will be described. These ideas provide fundamental insights into the nature of quantum states and measurement.
ObjectiveBy the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply them to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyse and discuss quantum algorithms and other quantum information-processing protocols.
ContentThe topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), error correction, fault-tolerant design, entanglement, teleportation and dense conding, teleportation of gates, and cryptography.
Lecture notesMore details to follow.
LiteratureQuantum Computation and Quantum Information
Michael Nielsen and Isaac Chuang
Cambridge University Press
Prerequisites / NoticeA good understanding of linear algebra is recommended.