376-1217-00L  Rehabilitation Engineering I: Motor Functions

SemesterSpring Semester 2017
LecturersR. Riener, J. Duarte Barriga
Periodicityyearly course
Language of instructionEnglish



Catalogue data

Abstract“Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits.
ObjectiveProvide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities.
Content“Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons).

The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies.
In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics.
Lecture notesLecture notes will be distributed at the beginning of the lecture (1st session)
LiteratureIntroductory Books

Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press.

Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004.

Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001.

Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000.

Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005.

Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000.

Selected Journal Articles

Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195.

Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432

Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700.

Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295.

Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206.

Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87

Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11

Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849

Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404.

Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894.
Prerequisites / NoticeTarget Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK
- Biomedical Engineering
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome

Performance assessment

Performance assessment information (valid until the course unit is held again)
Performance assessment as a semester course
ECTS credits4 credits
ExaminersR. Riener, J. Duarte Barriga
Typesession examination
Language of examinationEnglish
Course attendance confirmation requiredNo
RepetitionThe performance assessment is offered every session. Repetition possible without re-enrolling for the course unit.
Mode of examinationwritten 60 minutes
Written aidsKeine Hilfsmittel erlaubt, ausser einem Wörterbuch (English dictionary)
This information can be updated until the beginning of the semester; information on the examination timetable is binding.

Learning materials

 
Main linkInformation
Only public learning materials are listed.

Courses

NumberTitleHoursLecturers
376-1217-00 VRehabilitation Engineering I: Motor Functions2 hrs
Tue08-10ML F 39 »
R. Riener, J. Duarte Barriga
376-1217-00 URehabilitation Engineering I: Motor Functions1 hrs
Fri08-09HG E 1.2 »
R. Riener, J. Duarte Barriga

Restrictions

There are no additional restrictions for the registration.

Offered in

ProgrammeSectionType
Human Movement Sciences MasterElectivesWInformation
Biomedical Engineering MasterRecommended Elective CoursesWInformation
Biomedical Engineering MasterRecommended Elective CoursesWInformation
Electrical Engineering and Information Technology MasterRecommended SubjectsWInformation
Health Sciences and Technology MasterElective Courses IIWInformation
Health Sciences and Technology MasterElective Courses IIWInformation
MAS in Medical PhysicsElectivesWInformation
Mechanical Engineering MasterMechanics, Materials, StructuresWInformation
Mechanical Engineering MasterRobotics, Systems and ControlWInformation
Mechanical Engineering MasterBioengineeringWInformation
Robotics, Systems and Control MasterCore CoursesWInformation