151-0660-00L  Model Predictive Control

Semester Spring Semester 2017
Lecturers M. Zeilinger
Periodicity yearly course
Language of instruction English

Abstract Model predictive control is a flexible paradigm that defines the control law as an optimization problem, enabling the specification of time-domain objectives, high performance control of complex multivariable systems and the ability to explicitly enforce constraints on system behavior. This course provides an introduction to the theory and practice of MPC and covers advanced topics.
Objective Design and implement Model Predictive Controllers (MPC) for various system classes to provide high performance controllers with desired properties (stability, tracking, robustness,..) for constrained systems.
Content - Review of required optimal control theory
- Basics on optimization
- Receding-horizon control (MPC) for constrained linear systems
- Theoretical properties of MPC: Constraint satisfaction and stability
- Computation: Explicit and online MPC
- Practical issues: Tracking and offset-free control of constrained systems, soft constraints
- Robust MPC: Robust constraint satisfaction
- Nonlinear MPC: Theory and computation
- Hybrid MPC: Modeling hybrid systems and logic, mixed-integer optimization
- Simulation-based project providing practical experience with MPC
Lecture notes Script / lecture notes will be provided.
Prerequisites / Notice One semester course on automatic control, Matlab, linear algebra.
Courses on signals and systems and system modeling are recommended. Important concepts to start the course: State-space modeling, basic concepts of stability, linear quadratic regulation / unconstrained optimal control.

Expected student activities: Participation in lectures, exercises and course project; homework (~2hrs/week).