227-0690-09L  Advanced Topics in Control (Spring 2018)

Semester Spring Semester 2018
Lecturers B. Gentile
Periodicity yearly course
Language of instruction English
Comment New topics are introduced every year.


Abstract This class will introduce students to advanced, research level topics in the area of automatic control. Coverage varies from semester to semester, repetition for credit is possible, upon consent of the instructor. During the Spring Semester 2016 the class will concentrate on distributed systems and control.
Objective The intent is to introduce students to advanced research level topics in the area of automatic control. The course is jointly organized by Prof. R. D'Andrea, L. Guzzella, J. Lygeros, M. Morari, R. Smith, and F. Dörfler. Coverage and instructor varies from semester to semester. Repetition for credit is possible, upon consent of the instructor. During the Spring Semester 2016 the class will be taught by F. Dörfler and will focus on distributed systems and control.
Content Distributed control systems include large-scale physical systems, engineered multi-agent systems, as well as their interconnection in cyber-physical systems. Representative examples are the electric power grid, camera networks, and robotic sensor networks. The challenges associated with these systems arise due to their coupled, distributed, and large-scale nature, and due to limited sensing, communication, and control capabilities. This course covers modeling, analysis, and design of distributed control systems.

Topics covered in the course include:
- the theory of graphs (with an emphasis on algebraic and spectral graph theory);
- basic models of multi-agent and interconnected dynamical systems;
- continuous-time and discrete-time distributed averaging algorithms (consensus);
- coordination algorithms for rendezvous, formation, flocking, and deployment;
- applications in robotic coordination, coupled oscillators, social networks, sensor networks, electric power grids, epidemics, and positive systems.
Lecture notes A set of self-contained set of lecture notes will be made available.
Literature Relevant papers and books will be made available through the course website.
Prerequisites / Notice Control systems (227-0216-00L), Linear system theory (227-0225-00L), or equivalents, as well as sufficient mathematical maturity.