227-0690-09L  Advanced Topics in Control (Spring 2018)

SemesterSpring Semester 2018
LecturersF. Dörfler, B. Gentile
Periodicityyearly course
Language of instructionEnglish
CommentNew topics are introduced every year.


AbstractThis class will introduce students to advanced, research level topics in the area of automatic control. Coverage varies from semester to semester, repetition for credit is possible, upon consent of the instructor. During the Spring Semester 2016 the class will concentrate on distributed systems and control.
ObjectiveThe intent is to introduce students to advanced research level topics in the area of automatic control. The course is jointly organized by Prof. R. D'Andrea, L. Guzzella, J. Lygeros, M. Morari, R. Smith, and F. Dörfler. Coverage and instructor varies from semester to semester. Repetition for credit is possible, upon consent of the instructor. During the Spring Semester 2016 the class will be taught by F. Dörfler and will focus on distributed systems and control.
ContentDistributed control systems include large-scale physical systems, engineered multi-agent systems, as well as their interconnection in cyber-physical systems. Representative examples are the electric power grid, camera networks, and robotic sensor networks. The challenges associated with these systems arise due to their coupled, distributed, and large-scale nature, and due to limited sensing, communication, and control capabilities. This course covers modeling, analysis, and design of distributed control systems.

Topics covered in the course include:
- the theory of graphs (with an emphasis on algebraic and spectral graph theory);
- basic models of multi-agent and interconnected dynamical systems;
- continuous-time and discrete-time distributed averaging algorithms (consensus);
- coordination algorithms for rendezvous, formation, flocking, and deployment;
- applications in robotic coordination, coupled oscillators, social networks, sensor networks, electric power grids, epidemics, and positive systems.
Lecture notesA set of self-contained set of lecture notes will be made available.
LiteratureRelevant papers and books will be made available through the course website.
Prerequisites / NoticeControl systems (227-0216-00L), Linear system theory (227-0225-00L), or equivalents, as well as sufficient mathematical maturity.